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Despite advances in therapeutic development and diagnostic 
technologies, cancer is the leading cause of disease-related 
death in children in most developed countries1. Patients with 

high-risk pediatric cancer are children, adolescents and young adults 
(≤21 years) with a less than 30% chance of surviving 5 years after 
their diagnosis. These patients typically have an aggressive tumor 
with few established treatment options or relapsed or refractory  

disease despite standard therapy2–5. The potential availability of 
new targeted therapies and immunotherapies has ushered in the 
era of precision medicine, where the molecular profile of a tumor 
helps guide patient management6,7. The hypothesis is that match-
ing treatments to molecular changes in the tumor results in more 
effective cancer control and less long-term treatment-related side 
effects8. There are unique challenges to personalizing pediatric 
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The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or 
refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 
tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and 
RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberra-
tion, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing vari-
ants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients 
and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 
38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling 
resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients.
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cancer treatment: first, only 45% of pediatric cancer driver genes are 
shared with adult cancers9,10, suggesting that new therapeutic agents 
are required for pediatric cancer; second, pediatric cancers are often 
driven by structural variants that can be challenging to identify and 
target; and third, many new targeted drugs lack dosage guidelines 
and efficacy data in children. Thus, pediatric-specific treatment 
strategies will be critical to effective personalized medicine.

There are now several large-scale pediatric cancer precision 
medicine programs that have adopted different combinations of 
sequencing platforms7. Early reports suggested that pathogenic 
variants were detected in 39–50% of cases using a single platform 
or targeted approach11 to 50% or more when multiple sequenc-
ing platforms were combined (whole exome and RNAseq)12–16. 
Encouragingly, the Pediatric MATCH trial17 (NCT03155620) is 
finding targetable genetic changes in 24–29% of patients using 
targeted DNA sequencing18. In the research setting, deep WGS of 
tumors (60–100× depth) and matched germline DNA (30× depth) 
is currently the most accurate and comprehensive platform for the 
analysis of DNA mutations19,20. WGS identifies short protein-coding 
variants also accessible by targeted sequencing and resolves the 
noncoding genomic breakpoints of small and large copy number 
variants (CNVs) and copy number neutral structural variants (SVs). 
WGS accurately measures hypermutation and mutational signa-
tures21, both of which are clinically important22,23. RNAseq analysis 
detects expressed driver fusions24 and aberrantly expressed genes, 
which might correlate with drug sensitivity in cell lines25 and in 
some patients26. Finally, methylation profiling is remarkably accu-
rate in classifying central nervous system (CNS) tumors into spe-
cific molecular entities27, which is critical for patient management. 
We hypothesize that combining all these modalities into a compre-
hensive molecular profiling approach would have higher rates of 
actionable findings than those in previous reports.

A major challenge of using a comprehensive profiling approach 
for precision medicine is distilling which of the millions of molec-
ular changes within a tumor are pathogenic and relevant to clini-
cians28. Pathogenicity is determined by a multidisciplinary curation 
team without the ability to perform additional validation studies, 
instead relying on guidelines29, databases30, published literature and 
clinical experience. Reportable variants are those deemed impor-
tant drivers of tumor biology, a subset of which are potentially 
actionable. Actionable variants are a particularly fluid designation 
and can precipitate changed management, through informing diag-
nosis, prognosis, familial cancer risk or treatment. For example, 
actionability depends on drug and trial availability, which differ by 
jurisdiction and over time. Highly effective neurotrophic receptor 
tyrosine kinase (NTRK) inhibitors are now highly actionable since 
receiving US Food and Drug Administration approval31 but were 
less so when therapy required compassionate access programs32.

The Zero Childhood Cancer Program is Australia’s first national 
pediatric cancer precision medicine program, focused on real-time 
recruitment and analysis of patients with high-risk pediatric can-
cer. Here we present the first systematic evaluation of the utility and 
early clinical effects of a comprehensive molecular profiling plat-
form consisting of germline and tumor WGS, RNAseq and CNS 
methylome analysis to identify clinically significant variants rele-
vant to the biology of the tumor, diagnosis, clinical management or 
prognosis. We show that these molecular aberrations can be trans-
lated into treatment recommendations that show promising early 
clinical effects. This study also provides the first comprehensive 
estimate of the incidence and range of germline cancer susceptibil-
ity mutations in Australian patients with high-risk pediatric cancer.

Results
The molecular aberration landscape of high-risk pediatric 
cancers. From 2015 to June 2019, we recruited 247 patients with 
high-risk or rare pediatric cancers to the Zero Childhood Cancer 

Program and profiled 252 tumors. The first 47 patients were part 
of the TARGET feasibility study (L.L., C.M., J.Xie., P.B., M.W., 
et al., submitted manuscript). The next 200 consecutive patients 
were prospectively recruited onto the national PRecISion Medicine 
for Children With Cancer (PRISM) trial (NCT03336931) from 
September 2017. The study workflow is described in the Methods 
and Extended Data Fig. 1. The patient cohort was heterogenous 
with respect to cancer type, disease stage, age and treatments  
(Fig. 1 and Supplementary Table 1). Patients were recruited over the 
age of 21 years if the tumor type was predominantly a pediatric sub-
type or was a relapse of a childhood tumor (Fig. 1a). We grouped 
tumors into five main categories: CNS (n = 92), sarcoma (n = 62), 
non-sarcomatous extracranial solid (n = 35; hereafter solid tumor), 
neuroblastoma (n = 20) and hematological malignancy (n = 43) 
(Fig. 1b,c). Patients were enrolled at various disease stages: ini-
tial diagnosis (47.2%), relapse (41.3%) or refractory (9.9%). A few 
(1.6%) were treatment-induced secondary tumors.

For each individual tumor, we prospectively integrated results 
from WGS (n = 252, 100%) and RNAseq (n = 228, 90.5%) and 
methylation arrays for CNS tumors (n = 76, 29.3%) (Fig. 1b). We 
curated single-nucleotide variants (SNVs), short insertions and 
deletions (indels), SVs, CNVs, gene expression outliers, tumor 
mutation burden (TMB) and the match between the histopathologi-
cal diagnosis and the diagnostic subclass suggested by the molecu-
lar neuropathology (MNP) classifier in CNS tumors27 (Methods 
and Extended Data Fig. 1). Across the cohort, 92.1% (232/252) of 
tumors had at least one pathogenic or likely pathogenic somatic 
variant of any type affecting key oncogenic and tumor suppressor 
pathways (Fig. 2a and Extended Data Figs. 2 and 3a,b). Common 
SNV mutations affected epigenetic regulation (H3F3A, SMARCB1, 
ATRX and SMARCA4), DNA maintenance (TP53), cell cycle (RB1 
and ATM) and kinase signaling pathway genes (PIK3CA, PTEN, 
NRAS and NF1), consistent with the cancer subtypes in the cohort 
and previous studies9,10. Frequent CNVs included homozygous 
deletions of tumor suppressor genes (CDKN2A/B, PTEN, RB1 and 
TP53) and epigenetic modifiers (SMARCB1 and SMARCA4) and 
gene amplifications involving transcriptional regulators (MYC and 
MYCN), receptor tyrosine kinases (RTKs) (PDFGRA, ERBB2, KIT 
and EGFR) or the cyclin-dependent kinase CDK4 (Fig. 2b). WGS 
resolved precise CNV breakpoints in every case. Chromosome 1q 
gains were the most common whole chromosome arm gain (cen-
tromeric break points) in all tumor types (Fig. 2b and Extended 
Data Fig. 3b–f). However, whole chromosome arm gains or losses 
were uncommon compared to segmental CNVs (non-centromeric 
breakpoints), unlike adult tumors19. This likely indicates different 
mechanisms driving CNVs in childhood cancers.

Aberrant messenger RNA expression levels from RNAseq 
(Methods), when associated with genomic events such as CNVs, 
SVs and coding SNVs, provided orthogonal evidence that expres-
sion contributed to the biology of the tumor (Fig. 2c). For exam-
ple, PDGFRA, KIT or CDK4 overexpression associated with 
genomic amplification suggests that RTK signalling pathways or 
CDK4-driven dysregulation of the cell cycle are driver events and 
potential drug targets. However, 63% of genes curated as report-
able due to aberrant expression were not accompanied by explana-
tory events affecting the coding genome. Some overexpressed genes 
were reportable because of diagnostic associations (for example, 
PHOX2B in neuroblastoma), others because they suggested acti-
vation of targetable pathways, such as JAK-STAT or PI3K-mTOR 
signaling. We sought to identify noncoding driver variants linked 
to unexplained expression changes. In TERT, a gene for which pro-
moter mutation is a well-established mechanism of activation33, 
we observed canonical TERT-activating promoter mutations at 
A161T, C228T and C250T in eight tumors and three upstream SVs 
(Supplementary Table 1). An unbiased scan for promoters of other 
dysregulated genes with a statistical excess of noncoding variation 
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using NBR34 did not identify any significant loci, likely owing to our 
heterogenous and relatively small cohort size that limited power 
(Supplementary Table 2).

Integrated WGS and RNAseq identified 67 established or novel 
driver fusions (Fig. 2d). The most frequent were EWSR1 rear-
rangements, PAX3-FOXO1 and ASPCR1-TFE3 in Ewing’s sarcoma, 
alveolar rhabdomyosarcoma and alveolar soft part sarcoma, respec-
tively. There were 15 likely kinase-activating fusions, including six 
NTRK fusions. Other fusions highlighted new tumor biology. A 
BRD4-LEUTX in-frame fusion in an embryonal CNS tumor was 
identified both by WGS and RNAseq (Extended Data Fig. 4a). This 
retained the BRD4 bromodomains and the LEUTX homeobox. The 
homeobox of LEUTX functions as a transcriptional transactivator 
and normally is expressed during early embryogenesis35. LEUTX 
regulates genes associated with pluripotency and differentiation, 
similar to other homeobox gene fusions36. It is unknown if the BRD4 
domains might be targeted by bromodomain and extra-terminal 
inhibitors37.

WGS with RNAseq identified an additional 34 intragenic CNVs 
or other SVs that either activated oncogenes or inactivated tumor 
suppressor genes (Fig. 2e). These arose from deletions, duplica-
tions, inversions or translocations throughout the genome, fre-
quently expressed as out-of-frame fusions in RNAseq data. WGS 
detected IgH-MYC rearrangements, an established MYC-activating 
lesion38 associated with elevated RNAseq expression. Interpretation 
of complex events was enhanced using the novel WGS methods 
PURPLE, GRIDSS2 and LINX39, which resolved clusters of SVs into 
phased alignment chains. For example, a complex cluster of more 
than 100 linked SV events involving ten chromosomes created an 
out-of-frame TP53-SUZ12 fusion in a malignant peripheral nerve 
sheath tumor that simultaneously disrupted TP53 and the histone 
methyltransferase SUZ12 (Extended Data Fig. 4b–d). WGS and 
RNAseq identified three intragenic SVs, including two small dele-
tions and an intragenic inversion affecting exons 1–3 of IKZF1 in 
three cases of pre-B acute lymphoblastic leukemia (Extended Data 
Fig. 4E).

WGS and RNAseq are a powerful combination for interpreting 
the effect of DNA variants on splicing. Using our in-house algo-
rithm Introme (Methods), we identified six germline and 22 somatic 
splice-altering variants (Supplementary Table 3). Nineteen affected 
canonical splice sites, where RNAseq revealed functional effects, 
including whole or partial exon-skipping and intron readthrough 
(Fig. 2f and Extended Data Fig. 5). Four intronic variants were at 
the +3, +5 or −8 residue, including a somatic ATRX:c.6217+5G>A 

variant causing exon-skipping (Fig. 2g). Five coding variants in the 
last base of the exon, typically annotated as synonymous (n = 4) or 
frameshift (n = 1), caused exon-skipping and were reported as likely 
pathogenic or pathogenic.

Fig. 1 | Zero Childhood Cancer Program cohort demographics. 
Representation of the cohort consisting of 247 patients with high-risk 
pediatric cancer. a, Age distribution of the cohort (range, 0–31 years; 
median, 10 years) highlighting disease stage. b, From the innermost ring 
to the outer ring, the cohort is highlighted by the frequency of samples 
within each cancer type: CNS cancer (CNS), hematological malignancy 
(HM), neuroblastoma (NBL), sarcoma and non-sarcomatous extracranial 
solid tumor (solid tumor), stage of disease (initial diagnosis, refractory 
disease, relapse and secondary cancer) and sequence platform performed 
on each (WGS, RNAseq and methylation). c, The five main cancer types 
are broken down into more specific diagnosis with frequency of patients 
with each diagnosis represented. Cancer diagnosis key: high-grade 
glioma (HGG), diffuse midline glioma (DMG), ependymoma (EPD), 
medulloblastoma (MB), atypical teratoid rhabdoid tumor (ATRT), acute 
myeloid leukemia (AML), B-precursor acute lymphoblastic leukemia 
(BALL), T cell acute lymphoblastic leukemia (TALL), Ewing’s sarcoma 
(EWS), rhabdomyosarcoma fusion positive (RMS FP), osteosarcoma (OST), 
rhabdomyosarcoma fusion negative (RMS FN), malignant peripheral nerve 
sheath tumor (MPNST), malignant rhabdoid tumor (MRT) and Wilms 
tumor (WT).
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Fig. 2 | Pathogenic aberrations in high-risk pediatric cancers. a, The top five recurrently aberrated genes within six major pathways, highlighted by 
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tumor’s ploidy and loss of heterozygosity (LOH) indicated according to the legend. Both rings are on a scale of 0% to 40%. The most frequently observed 
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Therapeutically actionable genomic features in high-risk pedi-
atric cancer. Therapeutically actionable SNVs, CNVs and SVs are 
pathogenic variants that directly or indirectly indicate treatment 

with targeted anti-cancer drugs. These clustered most frequently in 
RTK signaling, MAP kinase signaling and PI3K-mTOR signaling 
pathways (Fig. 3a,b). RTKs were activated by point mutations (BRAF, 
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ALK, EGFR and FGFR1), high copy number gains (PDGFRA, EGFR 
and ERBB2) or fusions (Fig. 2a). PI3K-mTOR variants included 
known activating PIK3CA mutations or loss-of-function muta-
tions and deletions affecting PTEN, PTPN11, PIK3R1, PIK3R2, 
MTORC1 and MTORC2. Potentially targetable variants were recur-
rently seen in epigenetic regulation genes, including the SWI/
SNF complex genes SMARCB1, SMARCA4 and EZH2 and in the 
chromatin-remodeling gene PBRM1 (Fig. 3a,b). In the cell cycle 
regulatory pathways, the most common were CDKN2A/2B dele-
tions and CDK4 gene amplifications. Detecting uncommon poten-
tially targetable variants is a potential strength of WGS, such as 
STAG2-inactivating mutations (associated with sensitivity to PARP 
inhibitors40) and inactivating ZMYM3 (ref. 41) mutations, required 
for normal BRCA1 function. Notably, many common drivers, such 
as MYC or MYCN amplification and TP53 deletion or mutation, 
remain undruggable and, although pathogenic, would not be con-
sidered actionable. In several cases, elevated gene expression was 
the primary feature, suggesting a possible therapy. For example, 
unusually high CTLA4 prompted histological re-evaluation, which 
identified a significant burden of tumor-infiltrating lymphocytes 
and potential sensitivity to checkpoint inhibitor immunotherapy. 
Three tumors with elevated wild-type BCL2 expression were con-
sidered potentially sensitive to potent BCL2 inhibitors, based on 
expression of the drug target and lack of resistance mutations.

Reconciling the genomic architecture from WGS, with the read-
ing frame, expression abundance and retained functional domains 
from RNAseq, provided orthogonal validation and the confidence 
to assign pathogenicity and targetability to novel driver fusions 
(Fig. 2d). WGS revealed substantial genomic complexity underly-
ing many in-frame fusions. For example, an in-frame potentially 
targetable CLIP2-EGFR fusion arose from a chromothriptic event 
on chromosome 7 (Fig. 3c). In another example, WGS identified an 
out-of-frame FGFR1-ERC1 fusion arising from a complex derivative 
chromosome linking fragments of chromosomes 1, 8, 12 and 15. 
RNAseq indicated exon-skipping adjacent to the breakpoint, result-
ing in an in-frame transcript, driving FGFR1 expression (Fig. 3d).

Molecular profiling platforms can support a change of diag-
nosis. Another actionable class of variants were those that sup-
ported a change of diagnosis. This occurred in 11 cases through 
the identification of a specific fusion (n = 4), CNV (n = 2) or SNV 
(n = 5) not identified by standard testing. In two cases, we identi-
fied an EWSR1 fusion supporting a diagnosis of Ewing’s sarcoma 
and, in another, an EWSR1-ATF1 fusion supporting a diagnosis of 
gastrointestinal neuroectodermal tumor. In a high-grade glioma, 
a KIAA1549-BRAF fusion suggested a diagnosis of low-grade 
glioma42. In four CNS tumors, WGS identified histone H3 K27M 
mutations missed by standard testing (immunohistchemical analy-
sis), resulting in a diagnosis of diffuse midline glioma. In one case, 
the absence of a K27M variant indicated a high-grade glioma diag-
nosis. One diagnostic challenge, initially classified as an undifferen-
tiated lymphoma, was altered to rhabdoid tumor of small cell type 
after WGS identified biallelic SMARCB1 deletion43. A high-grade 
undifferentiated sarcoma harbored chr17p11.2–13.1 amplification 
and genome-wide instability with multiple chromothriptic events, 
supporting a change of diagnosis to osteosarcoma. For 76 CNS 
tumors, we used the DNA methylation MNP classifier27 to classify 
tumors into one of more than 80 distinct tumor classes or subclasses. 
For 53 (69.7%) tumors, there was a strong (>0.9) or weak (0.5–0.9) 
match to the original diagnosis (Extended Data Fig. 6). For nine 
(11.8%) tumors, there was a strong or weak match to a different 
diagnosis; however, for seven of these, the concordance between 
the histopathological and genomic features of the original diagnosis 
remained strong. In two cases, the methylation profile suggested a 
change of diagnosis: a relapsed medulloblastoma reclassified as a 
radiation-induced glioblastoma, supported by RNAseq changes44, 

and a recurrent posterior fossa anaplastic ganglioglioma reclassi-
fied as an IDH wild-type midline glioblastoma (0.99), despite the 
presence of a KIAA1549-BRAF fusion, normally associated with 
low-grade gliomas.

Germline WGS reveals high rates of germline cancer predisposi-
tion mutations. Germline cancer predisposition alleles were identi-
fied for 16.2% of patients (40/247), a higher rate than previously 
described via either whole exome or genome sequencing45. These 
40 patients harbored 52 pathogenic germline cancer predisposi-
tion alleles. In all but two cases, the allele was predicted to result 
in an increased cancer risk for the patient; the remaining two were 
heterozygous MUTYH loss-of-function variants that were reported 
owing to their association with an increased lifetime risk of colorec-
tal cancer46 (Fig. 4). Germline findings were made in all major can-
cer types, from a rate of 12.9% of patients with sarcoma to 21.9% 
in solid tumors (Fig. 4b,c). Strikingly, the risk variant was already 
known to the family in only 14/40 (35%) patients, and the variant 
was known in that individual in 11/40 (27.5%) patients.

Consistent patterns linked germline pathogenic variants with 
somatic features of the tumors, such as genome-wide somatic SNV 
TMB (Extended Data Fig. 7). Five tumors (four CNS and one sar-
coma) were hypermutated (10–100 mutations per Mb), and two CNS 
tumors were ultramutated (>100 mutations per Mb). Six of these 
seven patients with highly mutated tumors had germline mutations 
resulting in mismatch repair defects (MMRDs) and a somatic muta-
tion signature linked to MMRD and microsatellite instability (Fig. 
4a). Three of these patients were diagnosed with constitutive mis-
match repair deficiency based on biallelic germline loss of MSH6 or 
PMS2, two of which were ultramutated with somatic POLE mutation 
or deletion (Fig. 4a)47,48. Review of sequencing data, triggered by the 
association of POLE mutations with signature 14 and the ultramuta-
tor phenotype49, led to the identification of otherwise missed patho-
genic alleles (Extended Data Fig. 8). Across the full cohort, 75% (6/8) 
of patients with an MMRD somatic signature had a germline patho-
genic variant in an MMR gene versus no (0/239) patients lacking an 
MMRD signature (odds ratio (OR) infinite, 95% confidence interval 
(CI) > 71, two-sided P < 1 × 10−10, Fisher’s exact test). Patients with 
germline pathogenic variants in homologous recombination (HR) 
pathways often exhibited the associated somatic signature 3 (Fig. 4a 
and Extended Data Fig. 9). Seventeen percent of patients (4/23) with 
an HR somatic signature had a germline pathogenic variant in an 
HR repair gene versus 1.8% of patients (4/224) lacking the signa-
ture (OR = 11.3, 95% CI 2.0–66, two-sided P = 0.003, Fisher’s exact 
test). Somatic second hits were, in certain cases, highly consistent. 
Germline defects in SMARC genes were always associated with a 
somatic second hit in the same gene (Fig. 4a). Together, these results 
demonstrate the value of combining germline and somatic WGS for 
the identification of cancer risk variants.

We investigated why our rate of germline findings was higher 
than we anticipated10,45. Of 40 patients with germline cancer risk 
findings, four harbored variants in genes not reported in other stud-
ies, including MUTYH, and five harbored structural and copy num-
ber changes that might not be detected by exome-based sequencing. 
After excluding these, our overall rate of germline risk findings was 
11.7% (29/247) of patients. This is not significantly different from 
the 8.5% previously reported (29/247 versus 95/1120, OR = 1.4, 95% 
CI 0.89–2.26, two-sided P = 0.11, Fisher’s exact test). This suggests 
that our enhanced rate of germline findings results from advances 
in the understanding of pediatric cancer risk, and the enhanced 
detection of SVs and CNVs by WGS, but does not exclude an effect 
from the distribution of cancer subtypes and patient ethnicities in 
our cohort.

Overall utility of combined WGS, RNAseq and CNS methylome 
profiling. Germline and somatic SNV, indels, CNVs, SVs, TMB and 
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signature analysis all contributed to the actionable landscape total 
of 1,023 individual reportable findings. This included 968 germline 
and somatic molecular aberrations using WGS and RNAseq and 55 
CNS tumor classifications across the cohort (Extended Data Fig. 10).  
This large number includes instances where the same genomic 

event was detected independently by different platforms—com-
pound mutations to different copies of the same gene driving sig-
nificant effects on gene expression. TP53 and SMARCB1 illustrate 
this, where either gene is affected by combinations of germline 
and somatic SNVs, deletions and SVs associated with significantly 
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decreased expression. Collectively, 93.7% of patients had at least 
one reportable aberration (Extended Data Fig. 10a), with a median 
of three reportable findings per patient (range, 0–13; mean, 4). 
Overall, 386 (39.9%) of the reportable variants were supported 
by evidence from both WGS and RNAseq, leaving a striking 582 
(60.1%) reportable findings made from either WGS or RNAseq 
(Extended Data Fig. 10b), reinforcing the complementary nature of 
these approaches. Notably, outliers of gene expression without asso-
ciated genomic changes were a major category of reportable find-
ings (242, 25.0%). Ten of 16 samples with no reportable molecular 
events had low tumor purity estimates (<25%) and CNV profiles 
consistent with minimal or no tumor in the sample. For the remain-
ing six samples, CNV consistent with tumor was detected, but none 
was independently actionable.

Therapy recommendations. Our national multidisciplinary tumor 
board (MTB) considered therapeutic recommendations that were 
recommended only if age-specific safety data were available and if 
the therapy was accessible via clinical trials, compassionate access 
or off-label use. Each recommendation was assigned a tier from 1 
(highest) to 5 (lowest) as previously described50 (Fig. 5a, legend).

The MTB was presented 771 molecular aberrations from 201 
cases. Of these, 272 variants contributed directly to 237 distinct 
treatment recommendations. One hundred and thirty-four (67%) 
patients received at least one therapeutic recommendation, with 
some receiving up to five (Fig. 5a). Of these, 112 (48%) were Tier 
1 or Tier 2 recommendations; 122 (51%) were Tier 3 or Tier 4; 
and only three (1%) were Tier 5 (Fig. 5b). Most recommendations 
(70%) were for single-agent therapies. Combination therapies con-
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sisted of two targeted agents or a targeted agent and chemotherapy  
(Fig. 5c). The most common pathway targeted by recommended 
therapies was the PI3K/AKT/mTOR pathway (20.5%). Therapies 
targeting RTK (14.6%), the MAPK pathway (13.0%), cell cycle 
(12.3%) and epigenetic pathways, including the SWI/SNF/PRC2 
chromatin remodeling complex (9.1%), were the next most com-
mon (Fig. 5d). The most recommended drug combination was 
an mTOR inhibitor plus chemotherapy (26%), followed by PARP 
inhibitor plus chemotherapy (16%) and mTOR inhibitor plus 
CDK4/6 inhibitor (16%) (Fig. 5e).

Clinical response to treatment. Of the 134 patients who received 
an MTB recommendation, 43 (32%) had received the recom-
mended agent(s) at the time of data census. Five patients treated for 
fewer than 4 weeks were excluded from response assessment. Thus, 
38 patients were included in the follow-up of treatment (Fig. 6a),  
including three patients with no evidence of disease at the start of 
treatment, two of whom relapsed at 8 and 21 weeks, respectively, 
and one who remained disease free at 51 weeks. Thirty-five patients 
were evaluable for response. The best overall responses included 
four (11.4%) complete responses (CRs), seven (20%) partial 
responses (PRs), 14 (40%) stable disease (SD) and ten (28.6%) pro-
gressive disease (PD). There were similar proportions of Tier 1 and 
Tier 2 recommendations in patients with a CR/PR (45%), SD (50%) 
or PD (50%) (Fig. 6b). Some SD responses were remarkably durable, 
at least 24 weeks in six patients, and three of these patients contin-
ued on the recommended treatment for more than 12 months. Of 
the 28 patients with CNS or solid tumors with measurable disease 
(Fig. 6c,d), 17 (61%) had a measurable reduction in tumor burden. 
This was not correlated with the tier of treatment recommendation.

Discussion
Here we present the molecular findings from the first 247 patients 
recruited onto Zero Childhood Cancer, a prospective, national 
pediatric precision medicine program testing the feasibility of WGS, 
RNAseq and CNS methylome profiling for the clinical management 
of pediatric patients in real time. We demonstrate the utility of an 
integrative, comprehensive approach, with each genomic platform, 
independently and in combination, contributing to the detec-
tion of pathogenic variants in 94% of samples. This underpinned 
the identification of therapeutic targets in 71% of samples, which 
was higher than anticipated based on earlier experiences11–16,50–52. 
Zero Childhood Cancer employs WGS to identify reportable 
germline and tumor variants, including single- and multi-exonic 
CNVs, copy-neutral inversions and other SVs, as well as muta-
tional signatures and TMB. Precise WGS resolution of SV break-
points gives increased confidence in identifying short CNV and 
loss-of-heterozygosity regions that would be challenging to detect 
by looking only for changes in depth of coverage, particularly in 
low-purity tumors. In addition to maximizing the number of poten-
tial treatment recommendations, multiple platforms corroborating 
a variant reduces the need for additional validation tests, particu-
larly for novel mutations, which would otherwise be required at 
least in all instances where a clinical action might result.

We analyzed RNAseq not only to identify fusion genes but also 
to interrogate abundance, which contributes to the total number 
of reported aberrations7. It remains unclear which gene expression 
outliers represent legitimate therapeutic targets, particularly in the 
absence of SNVs, SVs and CNVs. Pathway resources, such as KEGG53 
or Reactome54,55, might not be sufficiently specific for pediatric onco-
genic pathway activation to be useful in this context. However, data 
from adult cancer studies suggest that selecting targeted drugs on the 
basis of expression aberrations can increase response rates26. Another 
study of high-risk pediatric patients showed that gene expression out-
liers identified potential therapeutic targets in at least 70% of cases24. 
Determining which expression profiles represent true biomarkers of 
clinical response remains an important objective.

The rate of pathogenic germline variants—16.2% of the cohort—
was higher than we anticipated, based on studies in other popu-
lations45. This is the first estimate of the prevalence of germline 
mutations driving high-risk pediatric cancer in the Australian 
population based on tumor–germline WGS. WGS was critical for 
the assignment of pathogenicity to several variants, notably where 
somatic features, such as mutation signatures, TMB and second-hit 
mutations, were instrumental in identifying the underlying germ-
line mutation(s). Targeted sequencing approaches find it challeng-
ing to identify copy-neutral structural variants and small CNVs and 
less accurately detect mutation signatures and TMB. We propose 
that WGS is the most comprehensive approach to detect hereditary 
cancer susceptibility.

The discovery of all potentially relevant molecular data in an 
individual tumor is, we contend, essential for the clinical applica-
tion of such evidence by MTBs and clinicians. The genomic com-
plexity of high-risk cancer is such that there is likely to be more 
than one genomic driving feature that would require targeting for 
effective treatment. Appreciating the full targetable landscape per-
mits the MTB and clinicians to consider how targeted therapies 
might be used, alone or in combination. Just as important is the 
opportunity for deeper analysis of data from programs such as Zero 
Childhood Cancer to extend understanding of the biology and 
therapeutic susceptibilities of high-risk childhood cancer. Although 
the use of methylation data was limited to CNS tumor subtype clas-
sification27, increasing the diagnostic confidence in 53 cases and 
supporting a change of diagnosis in two cases, analyzing the tumor 
methylome will likely have utility for many other pediatric cancers. 
Tumour-specific epigenetic changes likely explain features of pedi-
atric tumors, such as the aberrant gene expression profiles.

Although there are gene–drug interactions that can and are being 
tested now in important trials, such as MATCH17, there remain 
many gaps in the understanding of which molecular biomarkers 
accurately predict drug responses. For some very promising drugs, 
such as inhibitors of the anti-apoptotic BCL2 family, the genomic 
basis on which a drug recommendation might be made is essen-
tially unknown and still relies primarily on the cancer type, poten-
tially specific expression profiles56,57 and the absence of resistance 
mechanisms58,59. Moreover, the genomic determinants of responses 
to immunotherapies beyond TMB are still being unraveled. The 
combined WGS and RNAseq data sets of large-scale programs such 

Fig. 6 | Clinical responses to targeted therapies are observed across all tiers of recommendations. a, Swimmer plot of 38 patients who had received 
a recommended therapy for at least 4 weeks. x axis is time on treatment (weeks). The color of the bars indicates the MTB tier assigned to the 
recommendation (see main text). The responses are indicated by the symbols. Where a symbol is shown beyond the end of a bar, this indicates that 
the assessment occurred after the therapy was ceased. The arrow indicates that the patient continued with treatment. b, The stacked bars show the 
total number of patients for whom the best response fell in the indicated category. The colors of the stacked bars indicate the MTB tier assigned to 
the recommendation. c, Waterfall plot of CNS tumors assessed by RANO criteria in patients receiving recommended therapies. The dotted lines are at 
−50%, a score below which represents an objective response, and 25%, a score above which represents tumor progression. The color indicates the MTB 
tier assigned to the recommendation. d, Waterfall plot of extracranial solid tumors assessed by RECIST or PRECIST in patients receiving recommended 
therapies. The dotted lines are at −30%, a score below which represents an objective response, and 20%, a score above which represents tumor 
progression. The color indicates the MTB tier assigned to the recommendation. HM, hematological malignancy; NBL, neuroblastoma.
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as Zero Childhood Cancer will be a most important resource to 
drive discovery of drugs that target pathways important in child-
hood cancers and the application of drugs not currently available 
to children.

We have shown that a comprehensive molecular tumor profile 
comprising WGS, RNAseq and DNA methylation analysis led to 
a high rate of treatment recommendations. However, our MTB 
took a conservative approach, with most potentially targetable 
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molecular aberrations not being reported. Of those that were, 99% 
of recommendations fell into tiers requiring at least some degree 
of relevant preclinical or clinical data to support the recommenda-
tion, and only 1% relied on consensus opinion. To date, one third of 
patients with a treatment recommendation have received the rec-
ommended therapy, with a proportion showing evidence of clini-
cal benefit, including 31% with an objective response and others 
experiencing a period of prolonged SD. Sequencing is a powerful 
method to identify genomic driver lesions and expand the under-
standing of cancer biology. It is a substantially greater challenge to 
translate genomic information into improved patient outcomes. 
Encouragingly, the responses we have observed, although a small 
number, compare favorably, for example, with patients treated on 
pediatric phase 1 trials, unselected by tumor molecular profil-
ing, who have been reported historically to have a response rate 
of less than 10%60. Moreover, responses occurred across all tiers 
of therapy and across multiple different treatments and pathways 
targeted, suggesting that there is more to learn about the use of 
WGS and transcriptome sequencing in the personalized approach 
to therapy.

In high-risk childhood cancer, WGS and RNAseq both con-
tributed significantly to the identification of the full spectrum of 
germline and somatic driver variants and to clinical therapeutic rec-
ommendations. Whether this holds true in standard-risk pediatric 
cancers remains to be determined, but it seems likely that the opti-
mal molecular profiling approach might vary by disease type and 
stage. Our experience demonstrates that WGS and RNAseq offer 
the best opportunity to identify targetable driver genomic lesions in 
high-risk pediatric cancer.
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Methods
Information about the methods used in this study are also available in the Life 
Sciences Reporting Summary

Patients and samples. The pilot study (TARGET) was opened at the two children’s 
hospitals in Sydney, Australia (Sydney Children’s Hospital, Randwick and The 
Children’s Hospital at Westmead) from June 2015 to October 2017 and was 
approved by the Sydney Children’s Hospitals Network Human Research Ethics 
Committee (LNR/14/SCH/497). The PRISM clinical trial (NCT03336931), 
conducted as part of the Australian Zero Childhood Cancer Precision Medicine 
Program, was opened at all eight pediatric oncology centers around Australia 
(Sydney Children’s Hospital Randwick, Sydney; The Children’s Hospital at 
Westmead, Sydney; John Hunter Hospital, Newcastle; Queensland Children’s 
Hospital, Brisbane; Royal Children’s Hospital, Melbourne; Monash Children’s 
Hospital, Melbourne; Women’s & Children’s Hospital, Adelaide; and Perth 
Children’s Hospital, Perth) from September 2017 and was approved by the 
Hunter New England Human Research Ethics Committee of the Hunter New 
England Local Health District (reference no. 17/02/015/4.06) and the New South 
Wales Human Research Ethics Committee (reference no. HREC/17/HNE/29). 
Informed consent for each participant was provided by parents/legal guardian for 
participants under the age of 18 years and by the participants who were over the 
age of 18 years. Data sets from 47 patients enrolled on the TARGET pilot study 
(submitted manuscript) and 200 patients enrolled to June 2019 on the PRISM 
national clinical trial are included in this manuscript. Five patients had two 
tumors sequenced. Patients aged 21 years or younger with suspected or confirmed 
diagnosis of a very rare or high-risk malignancy (at diagnosis, relapse or refractory 
disease), defined as expected probability of survival of less than 30%, could be 
consented and registered on the study. Patients older than 21 years with suspected 
or confirmed high-risk pediatric-type cancers could also be registered with 
approval from the study chair. After trial registration, patient tumor samples were 
delivered to the Children’s Cancer Institute in Sydney for processing. A patient was 
deemed eligible for enrolment when all criteria were satisfied: high-risk cancer 
diagnosis clinically confirmed and when both a tumor and a germline sample were 
received at the Children’s Cancer Institute. Tumor tissue (solid tissue or tumor cells 
isolated from bone marrow aspirate or peripheral blood) was fresh, fresh frozen or 
cryopreserved upon receipt. When patients were recruited at relapse or after the 
onset of refractory disease, their original diagnostic samples were not obtained or 
sequenced. In those patients who had undergone a bone marrow transplantation 
during their treatment, both the patient germline (usually a skin punch biopsy or 
a sample from a previous clinical time point before bone marrow transplantation) 
and the donor germline (usually peripheral blood from the patient) were 
sequenced specifically to distinguish tumor-derived somatic variants from donor 
variants. The average turnaround time from enrollment to return of data to the 
MTB was 7.5 weeks.

WGS data analysis. WGS was conducted at the Kinghorn Centre for Clinical 
Genomics, Garvan Institute of Medical Research (Australia), using the Illumina 
HiSeq X Ten platform with a paired-end read length of 150 bases. Sequencing 
libraries were prepared from more than 1 µg of DNA using either TruSeq Nano 
DNA HT Sample Prep Kit (Illumina) or KAPA PCR-Free v2.1 (Roche). All 
germline samples were sequenced to a minimum mean coverage of 30×, the first 
five tumor samples to a minimum depth of 60× and the remaining tumor samples 
to a minimum mean coverage of 90×.

Raw fastq files were aligned to the hs37d5 reference genome using BWA-MEM 
(v0.17.10-r789)61, with resulting BAM files merged and duplicate reads marked 
using Novosort (v1.03.01; default settings), and read alignment improved using 
GATK Indel Realignment (v3.3)62. Germline SNVs and short (<50-bp) indels 
were identified using GATK HaplotypeCaller, GenotypeVCFs and VQSR (all 
v3.3)63, annotated with VEP (v87)64, converted into a GEMINI (v0.11.0)65 database 
and imported into Seave63 for filtration and prioritization. Somatic SNVs and 
short indels (<50 bp) were identified using Strelka (v2.0.17)66 and filtered using 
these criteria: QSS>=10 or QSI>=10; tumourVAF*QS>=1.3; from chromosomes 
1–22,X,Y,MT; in at most three (of 2,570) individuals in the similarly processed 
MGRB cohort;67 if not in the platinum genome’s high-confidence region 
(https://github.com/Illumina/PlatinumGenomes) then with tumourVAF>0.1 
and QSS>20 or QSI>20 or in a curated hotspot white list; NT=ref; and 
tumourVAF>=3*normalVAF. Even after filtering on variants where NT=ref—that 
is, with germline genotype ‘0/0’—some variants have germlineVAF>0; thus, this 
final filter retains only variants with excess signal in the tumor, allowing for some 
tumor in normal contamination. We benchmarked this approach (see below and 
Supplementary Table 4). Mutation signatures were analyzed using deconstructSigs 
(v1.8.0)68 and the Catalogue of Somatic Mutations in Cancer (COSMIC) mutation 
signatures (v2)21. Somatic variants were annotated using SnpEff (v4_3t)69 and 
imported into the in-house Glooee platform for filtration and prioritization. 
Tumor purity, ploidy and somatic copy number alteration were identified using 
PURPLE (v2.39)39, and somatic SVs were identified using GRIDSS (v2.7.2)70 and 
then annotated using Ensembl genes. LINX (v1.7) was used to visualize SV clusters 
and derivative chromosomes. The read evidence supporting all candidate variants 
was manually inspected using IGV (v2.6.2)71 before reporting. Refynr (v1.17.8), an 

in-house software, was used to create the analysis workflows for running on the 
DNAnexus platform (https://www.dnanexus.com/). Data analysis was performed 
using R (v3.5.3) (https://www.R-project.org/) via RStudio (v1.2.1335) (http://www.
rstudio.com/) and plotted using ggplot2 (v3.3.2)72.

Strelka somatic SNV and short indel benchmarking. Using WGS data from 
the COLO829 matched cancer and normal cell lines data (sequenced by Hartwig 
Medical Foundation), we ran Strelka (v2.0.17) using default settings and our 
custom filter (see above) with and without restricting to the GIAB high-confidence 
regions. We evaluated variant calling performance using bedtools isec (v2.28.0)73 
and a truth set of somatic SNVs and short indels74 from the European 
Genome-phenome Archive (EGAS00001001385).

Scan for noncoding promoter variation. High-confidence promoter regions were 
defined as the intersection of the PromCore regions previously reported34, with 
the Genome in a Bottle v2.0 high-confidence regions (ftp://ftp-trace.ncbi.nlm.
nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh37/union/GRCh37_
notinalldifficultregions.bed.gz) and the MGRB tier1+2 region67. Overlapping 
regions were merged without respect to strand using bedtools merge73, and regions 
<3 bp were removed. These high-confidence genome regions were then intersected 
with the promoter regions of our most aberrantly expressed genes (Fig. 2c) to 
identify eight candidate genes with both a high degree of aberrant expression and 
well-sequenced promoters.

We performed NBR34 by training the background mutation model on 
genome-wide high-confidence promoter regions but testing only the promoters 
of our eight candidate genes for excess mutation burden. To reduce the influence 
of false-positive variants and hypermutators on results, variant data were filtered 
to include only SNVs in patients with fewer than ten mutations per Mb. Multiple 
testing was controlled by the Benjamini–Hochberg procedure. All noncoding 
candidate variants were manually inspected using IGV (v2.6.2)71.

Splicing analysis. To identify the effect of variants on splicing, we developed 
Introme, which combines prediction scores from SpliceAI (v1.3.1)75, MMSplice 
(v2.1.0)76, dbscSNV (v1.1)77, Branchpointer (v1.3.1)78 and SPIDEX (v1.0)79. Introme 
(v0.5.1; P.S., R.L. Davis, V.G., M.W., C.M., et al., manuscript in preparation) used 
machine learning to integrate these individual scores, trained on ~1,000 variants 
with experimental validation. Rare coding or intronic germline or somatic variants 
were evaluated for splicing altering potential, with any score greater than 0.5 for 
any gain or loss of splicing potential manually assessed using IGV (v2.6.2)71 and 
Sashimi plots generated from RNAseq data using ggsashimi (v0.4.0)80.

Variant filtration. Germline variants were restricted to a list of cancer 
predisposition genes curated from literature (Supplementary Table 5) and 
prioritized by those that were rare in controls (<1% frequency in the Exome 
Aggregation Consortium (ExAC) database81, gnomAD82, MGRB67, Exome 
Sequencing Project (ESP)83 and 1000 Genomes84), were previously annotated as 
likely pathogenic or pathogenic in ClinVar or were novel loss-of-function variants 
in tumor suppressor genes. In silico prediction tools, including CADD (v1.3)85, 
Polyphen2 (v2.2.2)86, SIFT (v5.0.2)87, PROVEAN (v1.1)88, FATHMM  
(via dbNSFP v2.9)89, MetaSVM (v1.0)90 and MetaLR (v1.0)91, were used to support 
the pathogenicity assessment of missense variants using a consensus approach 
of at least four of seven in silico predictors. Somatic variants were restricted to a 
curated list of somatic cancer genes and, in addition to the filtering rules defined 
for germline variants, were prioritized if they were previously reported in somatic 
cancer databases, including the COSMIC variants92, the Cancer Gene Census93 
and the PeCan data portal (https://pecan.stjude.org/), with versions updated 
throughout the project.

Whole transcriptome data analysis. Whole transcriptome RNAseq was conducted 
at the Murdoch Children’s Research Institute (Australia) and performed with 
the TruSeq Stranded mRNA Preparation Kit. RNA sequencing was performed 
on 228 samples; 24 samples were not attempted because there was insufficient 
RNA (<400 ng) or the RNA quality was low (RNA integrity number < 5.0). 
Libraries were pooled, and sequencing runs were performed in paired-end mode 
using the Illumina HiSeq 4000 platform generating at least 40 million reads per 
sample (n = 47) or the NextSeq 500 platform generating at least 80 million reads 
per sample (n = 181). Initial RNAseq quality control (QC) checks included an 
evaluation of GC and per-base sequence content using FastQC (v0.11.5). All 
samples that passed initial QC were aligned to the human genome assembly (build 
hg19) using the STAR (v2.5)94 two-pass method with quantMode parameters 
set to TranscriptomeSAM for alignments translated into transcript coordinates. 
Alignments were sorted with SAMTools (v1.3.1), duplicates were marked with 
Picard Tools (v2.4.1), reads were split and trimmed and mapping qualities 
were reassigned with the Genome Analysis Toolkit (v3.6) using the methods 
SplitNCigarReads and ReassignOneMappingQuality, respectively. Post-alignment 
QC required at least 70% of reads to be uniquely aligned, assessed using STAR 
alignment statistics (100% of samples passed). Raw gene counts, transcripts per 
kilobase million (TPM), fragments per kilobase million (FPKM) and isoform 
expression values were calculated using RSEM (v1.2.31)61. All RNAseq expression 

Nature Medicine | www.nature.com/naturemedicine

https://clinicaltrials.gov/ct2/show/NCT03690193?term=NCT03336931
https://github.com/Illumina/PlatinumGenomes
https://www.dnanexus.com/
https://www.R-project.org/
http://www.rstudio.com/
http://www.rstudio.com/
https://ega-archive.org/studies/EGAS00001001385
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh37/union/GRCh37_notinalldifficultregions.bed.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh37/union/GRCh37_notinalldifficultregions.bed.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh37/union/GRCh37_notinalldifficultregions.bed.gz
https://pecan.stjude.org/
http://www.nature.com/naturemedicine


Articles NATURE MEDICInE

values are represented as TPM. For identification of outlier expressed genes, the 
entire cohort was combined, and, using both differential expression (DE) analysis 
and z score statistical analysis, each patient’s raw counts for DE and TPM for z 
score were compared against the cohort. The fold change, P value and z score were 
assessed to determine significance as well as the distribution of the gene in the 
cohort. If a gene had a z score greater than 2 and a fold change greater than 2 for 
overexpressed genes, or a z score less than −2 and a fold change less than −2 for 
underexpressed genes, then the gene’s distribution in the cohort was assessed to 
determine if it was a true outlier event. Variants were called on RNA with GATK 
HaplotypeCaller (v3.6), and ANNOVAR (v20190929)95 was used for variant 
annotation. A personalized in-house Python script was developed to extract 
variant allele frequency, filter out lowly expressed genes and integrate with somatic 
mutations identified from WGS single-nucleotide polymorphism and indel calls. 
Fusions were identified using three methods: STAR-Fusion (v1.3.1)96, JAFFA 
(v1.09)97 and Arriba (v1.1.0; https://github.com/suhrig/arriba/). Fusions were 
analyzed further if identified by a minimum of two algorithms, or by WGS, and 
one of the gene partners was in our curated list of known fusion genes. All fusions 
were automatically annotated as high, medium or low confidence and whether they 
were in-frame or not. High-confidence fusions had evidence of reads spanning 
the breakpoint (spanning reads) and reads covering both sides of the breakpoint 
(spanning pairs), with the breakpoint aligning to an exon–exon boundary; 
medium-confidence fusions had only spanning reads, with the breakpoint  
aligning to an exon–exon boundary; and low-confidence fusions did not align to 
an exon–exon boundary. Because Arriba can identify duplications, deletions or 
inversions, we manually validated these types of SVs identified by WGS to  
provide an extra level of evidence and support. The read evidence supporting all 
candidate fusions and SVs were manually inspected using IGV (v2.6.2)71 before 
reporting.

Methylation data analysis. CNS tumors that had a minimum of 100 ng of DNA 
were sent for methylation analysis on the EPIC 850K array conducted at the 
Australian Genome Research Facility (Australia). All samples that passed QC were 
then processed through the MNP classifier (online; versions might have changed 
over time)27 to classify the patient’s sample into more than 80 tumor classes and 
subclasses as well as to obtain the methylation status of the MGMT promoter. 
CNV profiles from WGS and methylation arrays were compared to check for 
inconsistencies. The methylation profiling component of Zero Childhood Cancer 
started after PRISM was launched and was performed on 76 of predominantly the 
most recent samples.

Data integration and visualization. Multi-omic data were integrated and 
visualized using our in-house interpretation platform Glooee. The platform 
collates molecular aberrations of all types into a relational database. Each patient 
is presented as a multi-tab Google spreadsheet highlighting different molecular 
aberration types, including clinical summaries. Where possible, data types are 
integrated: in the germline or somatic SNV and indel tables, variants are annotated 
by their gene-level copy number (including loss of heterozygosity) and gene 
expression levels; in the germline or somatic CNV tables, gene expression data are 
integrated. Algorithms reorder aberrations based on secondary mappings listed 
in the WGS data analysis section. A variant curation interface allows variant-level 
annotations to be tracked in a database and recalled for future reference and cohort 
analysis. QC data, plots and data visualization, including genome-wide circos, 
mutation signatures and CNV profiles, are also displayed in Glooee (versions 
updated throughout the project).

Variant curation. A national variant curation team was established to identify 
and classify reportable molecular events, including germline and somatic genetic 
changes, mutation signatures, gene expression, classification results and gene 
methylation. A pathogenicity score was then assigned to each variant: C1, Benign; 
C2, Likely Benign; C3, Variant of Unknown Significance; C4, Likely Pathogenic; 
and C5, Pathogenic, in accordance with published guidelines29. Variants that were 
classified as either C4 or C5 were then deemed reportable to the MTB. Each variant 
was further curated as a driver mutation and whether it is targetable (linked to a 
potential change in treatment), diagnostic, prognostic or a known germline cancer 
predisposition variant. Genes with outlying expression levels (typically z score > 
2 or < −2 as standalone changes or > 1.5 and < −1.5 if supported by expression 
differences in related genes/pathways) were reported if they helped inform tumor 
diagnosis or were in genes with known targetable drugs that would have been 
reported if the gene were amplified or deleted. Reportable variants linked to known 
anti-cancer drugs with the correct mode of mutation (for example, amplification, 
in-frame fusions retaining kinase domains or overexpression for RTKs) were 
established in the curation meetings through extensive literature search and 
in-house expertise.

Therapeutic recommendations and response to treatment. A national MTB 
meeting occurred every 2 weeks using a Health Insurance Portability and 
Accountability Act-compliant video-conferencing software and was attended by 
oncologists, pathologists, geneticists, basic scientists, bioinformaticians and study 
managers. A templated report with tier-ranked recommendations was issued 

thereafter: Tier 1, clinical evidence in the same cancer; Tier 2, clinical evidence 
in a different cancer; Tier 3, preclinical evidence in the same cancer; Tier 4, 
preclinical evidence in a different cancer type; and Tier 5, consensus opinion. The 
treating clinician made the final treatment decisions, including consideration for 
treatments other than the MTB recommendations. All information distribution 
was compliant with the Australian Privacy Act of 1988.

Response and progression were evaluated by local board-accredited 
radiologists at participating centers using the revised Response Evaluation Criteria 
in Solid Tumors (RECIST) guidelines (version 1.1)98 and the Positron Emission 
Tomography Response Criteria in Solid Tumors (PERCIST) guidelines99 for solid 
tumors, the Response Assessment in Neuro-Oncology (RANO) criteria100 for 
CNS tumors and National Comprehensive Cancer Network guidelines for acute 
leukemia. To meet criteria for SD, measurements must have met the SD criteria at 
a minimum interval of 6 weeks after commencing a recommended treatment. All 
patients with a CR or PR had confirmation of the response with a follow-up scan.

Statistical methods. Associations between categorical variables were represented 
as ORs and tested using two-sided Fisher’s exact tests, with group numbers as 
given. Excess promoter variation was tested by the NBR method, as described in 
the Supplementary Methods section ‘Scan for noncoding promoter variation’, with 
multiple test correction following the Benjamini–Hochberg step-up procedure. All 
tests were implemented in R (v3.5.3) (https://www.R-project.org/).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
WGS, RNAseq and methylation data generated by this study are available from the 
European Genome-phenome Archive under accession number EGAS00001004572. 
Databases used to help filter, prioritize and interpret variants are available online, 
including COSMIC (https://cancer.sanger.ac.uk/cosmic), Cancer Gene Census 
(https://cancer.sanger.ac.uk/census), Pecan (https://pecan.stjude.cloud/), dbscSNV 
(http://www.liulab.science/dbscsnv.html), dbNSFP (https://sites.google.com/site/
jpopgen/dbNSFP), ExAC (http://exac.broadinstitute.org/), gnomAD (https://
gnomad.broadinstitute.org/), MGRB (https://sgc.garvan.org.au/), GIAB (https://
jimb.stanford.edu/giab-resources), Platinum Genomes (https://github.com/
Illumina/PlatinumGenomes), ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), 
ESP (https://evs.gs.washington.edu/EVS/) and 1000 Genomes (https://www.
internationalgenome.org/data).

Code availability
Software and scripts related to this publication are available at https://github.com/
CCICB/2020-hrPC-landscape.
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Extended Data Fig. 1 | ZERO Workflow. a, The workflow of samples through the ZERO program is shown. Patients were enrolled at one of eight paediatric 
hospitals, samples processed centrally then profiled at various national centres of excellence for WGS, RNAseq and methylome analysis. The data from 
each molecular profiling platform are analysed centrally and integrated where possible via dedicated bioinformatics pipelines. The resulting molecular 
aberrations or classifications from all analysis pipelines are collated and stored in a relational database and integrated by an in-house integration system, 
Glooee. Here, Glooee applies algorithms that score and rank each variant for prioritisation and generates visualisations to support data quality control 
assessment and downstream curation. The curation process is critical for classifying molecular aberrations prior to reporting changes to the Molecular 
Tumour Board (MTB). The multidisciplinary curation team determines the pathogenicity of each variant (C1–C5) consistent with published guidelines29. 
Ultimately the molecular aberrations are assessed for their reportability (that is of potential interest to clinicians), potential targetability with anticancer 
drugs, potential to support, refine, or propose a change of diagnosis, prognosis, or indicate the presence of a germline cancer predisposition syndrome. The 
MTB determines the strengths of molecular, preclinical or clinical data supporting potential therapeutic findings. Ultimately, the MTB seeks consensus on 
what is reported back to the patient. b, the variant types for which each sequencing platform was used. The red colouring in Tumour WGS and RNAseq 
indicates that both platforms were used to corroborate these variant types where possible.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNATURE MEDICInE

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Mutational Landscape of High-Risk Paediatric Cancers. An oncoprint of the reportable germline and somatic events, of any type, 
observed in more than 2 patients. Genes are classified into broad pathway categories and ordered by the percentage of patients harbouring an alteration  
in the specified gene. The barplot above shows the number of events in each patient highlighted by aberration type. The barplot on the right shows the 
total number of events in each indicated gene, highlighted by aberration type and represents genes where more than one aberration, for example CNV  
gain and over-expression, occurred in the same sample. Where individual genes are shown for each patient, the colour represents the variant type  
(legend shown on right). Where these bars have multiple colours, it is because the same variants were detected by different techniques, or there  
are multiple variant types affecting each allele. The heatmaps on the bottom show the distribution of cancer type, stage of disease and sex of patient 
(legend shown on the right).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Pathogenic Aberrations in High-Risk Paediatric Cancers. a, Genes recurrently altered by any of the different variant types are 
shown, grouped by broad pathway categories and ordered by the frequency of the mutation. The plot includes all genes affected in >2 patients. The 
colouring of the bars indicates the proportion of each variant type. b–f, Circos plots of the genome-wide copy number profiles for each major category of 
cancers. The amplifications and deletions or LOH relative to the tumour ploidy are shown according to the inset legend. The scale on both rings is 0–70% 
and inverted for the inner ring. The genes most frequently observed with high-level amplifications, homozygous deletions and immunoglobulin or T-cell 
receptor gene rearrangements (*) are shown. The number of patients in each subtype are CNS (n=92), HM (n=43), NBL (n=20; n=8 males), Sarcoma 
(n=61), other solid tumours (n=35).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Complex structural rearrangements driving novel fusions. a, BRD4-LEUTX fusion identified from RNAseq and WGS from a 
CNS embryonal tumour at diagnosis in an infant. This figure reveals that at least one SV joined exons 1–11 of BRD4 to exons 2–3 of LEUTX. These exons 
were highly expressed (coverage histogram above each exon) and the resulting fusion was in-frame and retained the bromodomains in BRD4 and 
homeobox domain in LEUTX. The expression of LEUTX across cohort is depicted (right), with patient highlighted in red, other CNS embryonal tumours 
in green and cohort in black. b, LINX visualisation guide, highlighting how multiple SV can be chained together into a derivative chromosome, where SV 
breakpoints flank defined CNV segments. c, Complex genome topology underlies an out-of-frame TP53-SUZ12 fusion identified from an MPNST tumour 
at initial diagnosis in an adolescent. The plot shows a predicted derivative chromosome, characterised by many SVs (purple lines) and CNV segments 
(predominantly green segments with ploidy of 2–4) of 10 chromosomes as indicated. d, A dot plot representation of expression TPM values of TP53 in 
the cohort, patient with TP53-SUZ12 highlighted in red, other MPNST in green and cohort in black, black horizontal line signifies cohort mean TPM. e, A 
pathogenic 607 bp deletion affecting intron 1, a 96 Kb deletion and a 66 Kb inversion, both affecting exons 2–3 of IKZF1 were identified in three patients 
with pre-B ALL. The inversion was likely in trans with a germline pathogenic splicing variant (IKZF1:c.40+1G>A). In two other pre-B ALL cases a tumour 
with a haploid genome had an IKZF1 deletion and another had a deletion and a likely pathogenic somatic variant (IKZF1:c.544T>C, p.(Cys182Arg)); in both 
cases the CNV was not deemed to be a driver mutation and was not reported. The plot was made using GenomePaint (X Zhou, in prep).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Integration of WGS and RNAseq reveals the impact of mutations on splicing. a–l, The impact of unique somatic mutations 
on gene splicing, where details about each mutation are in Supplementary Table 3. In each case, a patient’s mutation is shown in red, relative to the 
exon-intron boundary. The patient’s RNAseq read coverage is shown above (red) as a histogram, and the number of reads supporting each splice junction, 
compared to four cancer-type matched controls below (purple).
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Extended Data Fig. 6 | Methylation classification results from CNS tumours. CNS tumour methylation array classification results from 76 patients were 
binned into those where a strong, weak or no match was made to a known tumour subtype and then by whether that classification matched, differed, or 
resulted in a change of the initial diagnosis determined from standard of care diagnostic testing.
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Extended Data Fig. 7 | Tumour Mutation Burden across the cohort. Somatic single nucleotide tumour mutation burden (TMB) for each patient and the 
mean per cancer type (red line), expressed as genome-wide mutations per MB. Ninety-four percent of tumours had low TMB (<10 mutations per MB), 
consistent with previous reports10.
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Extended Data Fig. 8 | Germline and somatic features of ultramutated CNS tumours. a, Circos plot depicting the genome-wide mutation profile of 
an HGG, from a child, with 165 mutations/MB. The inner area shows SVs, followed by the minor allele ploidy (here highlighting the expected loss of 
heterozygosity on chrX), then CNV (deletions in red, amplifications in green), followed by somatic SNVs coloured according to the figure legend.  
b, Mutation signature analysis69 (Methods) showed that most mutations matched previously known mutation signatures. c, The burden of each 
mutation signature is shown, where signature 14 has been associated with CMMRD and somatic POLE/POLD1 mutations in the exonuclease domain49. 
A somatic POLE hotspot mutation (p.Leu424Val) was identified, which was classified as a VUS in ClinVar (RCV000033144) at the time of sequencing. 
d, MLPA analysis revealed a heterozygous exon 12 duplication but could not resolve the breakpoints. We re-inspected the WGS data which revealed 
the heterozygous exon 12 duplication of PMS2 from 7:6,021,129–6,023,032 (POLE:p.(Lys670Ala725dup). None of our SV detection tools from WGS or 
RNAseq identified this variant. Exons 12–15 of PMS2 are difficult to sequence due to 99% sequence homology with a pseudogene. WGS easily identified 
the other pathogenic allele (c.949C>T, p.(Gln317Ter)) and loss of PMS2 expression confirmed by IHC, resulting in a diagnosis of CMMRD. Panels E-H 
similarly represent the molecular findings from a hemispheric HGG tumour with 353 mutations/MB. In this case, signature 14 again prompted us to look 
for POLE/POLD1 variants, revealing a clear somatic deletion of one POLE allele and a subclonal hotspot mutation (p.S459F) with just 4 supporting reads 
and several VUS on the remaining allele. RNAseq did not support the expression of this hotspot mutation, so it was not reported. Both examples highlight 
how somatic features of the tumour, in this case TMB and mutation signatures prompted a deeper investigation into the molecular drivers of  
these tumours.
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Extended Data Fig. 9 | Germline HR mutation driving a tumour with signature 3. An example of concordant germline and somatic findings supporting a 
treatment recommendation, showing the tumour’s observed mutation spectrum (top panel), the HR-associated signature 3 mutation spectrum (middle 
panel), and the inferred signature exposure in the tumour (bottom panel), with signature 3 the dominant signal supporting the recommendation of  
a PARP inhibitor.
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Extended Data Fig. 10 | Multi-platform approach in ZERO increases reportable events. a, The number of reportable events identified in each individual 
patient, coloured by the source of the data, whether from WGS only, RNAseq only, both WGS and RNA, germline WGS or by methylation array. The x-axis 
is each patient in the cohort. The y-axis is the number of reportable findings in each patient. b, The total number of reportable variants separated by type 
of event and coloured by the platform identifying the event. SNV: Single Nucleotide Variant, CNV: Copy Number Variant, SV: Structural Variant, EXP: Gene 
Expression, GL: Germline, METH: Methylation, TMB: Tumour Mutation Burden.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Clinical data collection was performed within LabMatrix by Biofortis, version R7.3.2.0

Data analysis Code availability 
Software and scripts related to this publication are available at https://github.com/CCICB/2020-hrPC-landscape. 
 
In addition, these in house, open source and commercial tools were used in this publication: 
ANNOVAR (v20190929) 
Arriba (v1.1.0) 
BWA-MEM (v0.17.10-r789) 
Branchpointer (v1.3.1) 
CADD (v1.3) 
FATHMM (via dbNSFP v2.9) 
FastQC (v0.11.5) 
GATK GenotypeVCFs (v3.3)  
GATK HaplotypeCaller (v3.3 for WGS and v3.6 for RNAseq)  
GATK Indel Realignment (v3.3)  
GATK ReassignOneMappingQuality (v3.6) 
GATK SplitNCigarReads (v3.6)  
GATK VQSR (v3.3)  
GEMINI (v0.11.0) 
GRIDSS (v2.7.2) 
IGV (v2.6.2) 
Introme (v0.5.1) 
JAFFA (v1.09) 
LINX (v1.7) 
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MMSplice (v2.1.0) 
MNP Classifier (online, versions may have changed over time) 
MetaLR (v1.0)93  
MetaSVM (v1.0) 
NBR (custom scripts available https://github.com/CCICB/2020-hrPC-landscape/tree/master/NBR) 
Novosort (v1.03.01) 
PROVEAN (v1.1) 
PURPLE (v2.39) 
Polyphen2 (v2.2.2) 
R (v3.5.3) 
RNA VAF estimator (custom scripts online, https://github.com/CCICB/2020-hrPC-landscape/blob/master/RNA_VAF.py) 
RSEM (v1.2.31) 
RStudio (v1.2.1335) 
Refynr (v1.17.8) 
SAMTools (v1.3.1) 
SIFT (v5.0.2) 
SPIDEX (v1.0) 
STAR (v2.5) 
STAR-Fusion (v1.3.1) 
Seave (https://seave.bio; updated throughout the project) 
SnpEff (v4_3t) 
SpliceAI (v1.3.1) 
Strelka (v2.0.17) 
Strelka filter (https://bitbucket.org/cciacb/cci-strelka-filter/src/master/) 
Variant Effect Predictor, VEP (v87) 
bedtools (v2.28.0) 
dbNSFP (v2.9) 
dbscSNV (v1.1) 
deconstructSigs (v1.8.0) 
ggplot2 (v3.3.2) 
ggsashimi (v0.4.0) 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data availability 
WGS, RNAseq and methylation data generated by this study are available from the European Genome Archive, accession number EGAS00001004572.  
 
Databases used to help filter, prioritise and interpret variant are available online, including COSMIC (https://cancer.sanger.ac.uk/cosmic), Cancer Gene Census 
(https://cancer.sanger.ac.uk/census), Pecan (https://pecan.stjude.cloud/), dbscSNV (http://www.liulab.science/dbscsnv.html), dbNSFP (https://sites.google.com/
site/jpopgen/dbNSFP), ExAC (http://exac.broadinstitute.org/), gnomAD (https://gnomad.broadinstitute.org/), MGRB (https://sgc.garvan.org.au/), GIAB (https://
jimb.stanford.edu/giab-resources), Platinum Genomes (https://github.com/Illumina/PlatinumGenomes), ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), ESP 
(https://evs.gs.washington.edu/EVS/), 1000 genomes (https://www.internationalgenome.org/data). 
 
Notes to editor 
1 - we are still transferring data to EGA. This is being done in 10TB batches and will be completed by 4-6 weeks 
2 - Please note that a "gemini database" is not available on the web – it is essentially a local SQLite database version of a VCF file, making it easier to query these 
data. 
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Sample size At the time of study design the literature indicated that 90% of the enrolled patients should have adequate tumour tissue for molecular 
analysis, up to 45% of relapsed/refractory tumour samples would have actionable mutations and up to 10% of paediatric cancer patients may 
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have a reportable germline mutation. 
We therefore hypothesised that: 
• 10% of the tumours from enrolled patients cannot be profiled using any of the methods because the quantity and/or quality of the 
submitted tumour tissue would be inadequate for analysis, i.e. 90% of the patients would have adequate tumour tissue 
• 50% of the patients with adequate tumour tissue would have a targetable alteration detected by molecular profiling  
• 60% of the above patients would receive a recommendation in at least one of the three categories (drug, change of diagnosis, germline 
mutations) 
• 75% of the recommendations would be made within a clinically relevant timeframe (before terminal progression or death) 
Hence the predicted proportion of enrolled patients who would receive a recommendation in at least one of the three categories within a 
clinically relevant timeframe was 20%. Feasibility is therefore defined as 20% or more of the patients receiving a recommendation for 
personalised treatment within a clinically relevant timeframe. A sample size of 246 would provide a 95% confidence interval of +/-5% for a 
20% recommendation rate. 

Data exclusions No data excluded

Replication This was a feasibility study where replication was not applicable.

Randomization This is an observational study testing the feasibility of implementing a precision medicine platform in a high risk paediatric cancer population 
and therefore randomization was not applicable.

Blinding There is no group allocation to which investigators sould be blinded

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Age <21 years, any gender, diagnosis of cancer with a 5-year survival probability estimated at 30% or less, at any time of disease 
course (diagnosis, relapse, progression), any prior treatment with no segregation of treatment categories

Recruitment This is an observational study where paediatric participants, who were eligible as per study criteria, were identified by the 
treating clinician. While a small number of patients were excluded from tumour analysis because of lack of suitable tumour 
material, this is unlikely to impact on the results. It is possible that investigators had a bias to enrol patients whose tumours they 
considered more likely to harbour targetable lesions. However, there was a broad spectrum of tumour types included, and the 
number and types of patients enrolled were in keeping with the anticipated national annual incidence of high-risk tumour types.  

Ethics oversight Ethics approval was provided by Sydney Children’s Hospitals Network Human Research Ethics Committee (LNR/14/SCH/497) for 
the TARGET pilot study and by the Hunter New England Human Research Ethics Committee of Hunter New England Local Health 
District in New South Wales, Australia (Reference No: 17/02/15/4.06) and New South Wales Human Research Ethics Committee 
(Reference No: HREC/17/HNE/29) for the PRISM study. 
 
Informed consent for each participant was provided by parents/legal guardian for participants under the age of 18 years and by 
the participants who were over the age of 18 years. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NCT03336931
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Study protocol https://clinicaltrials.gov/ct2/show/NCT03336931

Data collection For TARGET pilot cohort, patients were recruited between June 2015 and October 2017, with data collected prospectively 
collected during the same time interval. 
 
For the PRISM cohort, patients were recruited between September 2017 and May 2019, with data collected prospectively 
collected between September 2017 and March 2020. 
 
All clinical data presented in this manuscript was collected by designated study co-ordinators based at each of the 8 clinical 
centres where the children with malignancy are managed in Australia; Sydney Children's Hospital, Westmead Hospital for 
Children, Royal Children's Hospital, Melbourne, Monash Hospital for Children, Melbourne, Queensland Children's Hospital, 
Brisbane, Women's and Children's Hospital, Adelaide, Perth Children's Hospital, Perth, John Hunter Hospital, NSW.

Outcomes The primary and secondary clinical outcomes described in the manuscript were predefined in the PRISM protocol as below: 
 
Primary endpoint: 
Proportion of patients receiving a recommendation for (1) personalised therapy within a clinically relevant timeframe (before 
terminal progression or death), (2) for change of diagnosis or (3) for further action related to germline mutations. 
 
Secondary endpoints: 
1. Proportion of tumour samples found to have actionable molecular alterations 
2. Proportion of patients who subsequently receive the recommended personalised therapy 
3. Response rate to recommended personalised therapy as measured by RECIST and RANO criteria 
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