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Abstract We performed whole genome sequencing (WGS)
in nine families from India with early-onset hereditary spastic
paraplegia (HSP). We obtained a genetic diagnosis in 4/9
(44 %) families within known HSP genes (DDHD2 and
CYP2U1), as well as perixosomal biogenesis disorders
(PEX16) and GM1 gangliosidosis (GLB1). In the remaining
patients, no candidate structural variants, copy number vari-
ants or predicted splice variants affecting an extended candi-
date gene list were identified. Our findings demonstrate the
efficacy of using WGS for diagnosing early-onset HSP, par-
ticularly in consanguineous families (4/6 diagnosed),
highlighting that two of the diagnoses would not have been
made using a targeted approach.

Keywords Hereditary spastic paraplegia .Whole genome
sequencing .Metabolic . Gangliosidosis . Zellweger .

SPG54 . SPG56

Introduction

The hereditary spastic paraplegias (HSPs) are a group of dis-
orders characterised by progressive lower limb weakness and
spasticity. There is marked genetic heterogeneity with over 60
genes identified. Massively parallel sequencing approaches
such as targeted multigene panels, whole exome sequencing
(WES), and whole genome sequencing (WGS) have facilitat-
ed genetic diagnosis in HSP [1, 2]. WGS may have advan-
tages over WES including more consistent coverage and the
potential for more precise detection of structural variants
(SVs) and copy number variants (CNVs). For example,
single- or multiexon-sized deletions can be found in autoso-
mal dominant and autosomal recessive HSP (SPG4 and
SPG11, respectively). The goal of this study was to assess
the utility of WGS in a previously undiagnosed sample of
early-onset HSP from India.

Brief methods

The research was approved by the appropriate institutional
ethics committee (HREC/10/HAWKE/132), and all partici-
pants provided written informed consent. We initially recruit-
ed ten consecutive families with early-onset HSP from the
NeuroSpecialities Centre or KLE University Hospital in
Belgaum, India.

WGS was performed on at least one affected proband.
Parents and siblings were included for consanguineous fami-
lies, subject to DNA availability. Genomic DNAwas extracted
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from peripheral blood leucocytes (NucleoSpin® Blood,
Macherey-Nagel). WGS was performed on the Illumina
HiSeq X sequencers at the Kinghorn Centre for Clinical
Genomics (KCCG). Data were analysed following the
GATK best practises pipeline, as described [3]. Gender and
relatedness checks were performed using PLINK and KING
[4].

Variants were prioritised according to population frequency
databases (including ExAC), variant impact, in silico predic-
t ion (SIFT and Polyphen2) , known HSP genes
(Supplementary Table 1), genes previously associated with
neurological phenotypes and the HSPome [5], using Seave
(seave.bio). For the family studies, variants were also filtered
according to homozygous, compound heterozygous, de novo
dominant and X-linked recessive models of inheritance, as
appropriate. All candidate variants were confirmed by
Sanger sequencing. Homozygosity mapping was performed
using ROHmer (Puttick et al., manuscript in preparation).
Detection of SVs and CNVs was performed using
VarPipeSV (Minoche et al., manuscript in preparation). To
predict the impact that all coding and intronic SNPs from
HSP genes would have on splicing, we used SPANR [6].
Variants were classified according to ACMG 2015 criteria
[7]. See the Supplementary File for methods in detail.

Results

We recruited ten families to this study; however, following
gender and relatedness checks, we identified a sample mixup
in family 10, which we could not reconcile; so this family was
removed for further consideration (Supplementary Fig. 1).
The majority of families studied were consanguineous (6/9)
with complex clinical phenotypes (7/9). For the 77 known
nuclear HSP genes, 60 (78 %) had 100 % coverage >15×
depth, and 69 (90 %) had 95 % coverage >15× depth
(Supplementary Fig. 2), giving high power to detect variants.
On average, we identified 4.7 M variants in each individual,
6200 of which are in known HSP genes, 49 of which have
medium or high impact (Supplementary Table 2). We made a
genetic diagnosis of HSP in 4/9 families (Fig. 1,
Supplementary Table 3); 2/9 families had mutations in known
HSP genes (Supplementary Table 4). Putative disease-causing
variants were classified PVS1 or PS1 (ACMG 2015 criteria).

In family 12 (Fig. 1a), we identified a novel homozygous
canonical splice site variant in the DDHD2 gene
(NM_015214.2:c.(1125+1G>T)), confirmed to be hetero-
zygous in both unaffected parents. DDHD2 mutations cause
SPG54, which is associatedwith very early-onset spastic para-
plegia (before 2 years of age), intellectual disability, a thin
corpus callosum (TCC) and optic nerve involvement [8].
This is consistent with the phenotype in family 12 with
infantile-onset spastic paraplegia, cognitive and behavioural

abnormalities, neuroimaging findings of a TCC and white
matter abnormalities and evidence of optic atrophy on
fundoscopy.

In family 9 (Fig. 1b), we identified a homozygous frame-
s h i f t d e l e t i o n i n t h e C Y P 2 U 1 g e n e
( N M _ 1 8 3 0 7 5 . 2 : c . ( 7 8 2 _ 7 8 5 d e l T C T G ) ,
NP_898898:p.(Cys262*), at the site of a previously reported
pathogenic missense mutation [9]. This variant was hetero-
zygous in both unaffected parents. The clinical features in this
family are consistent with the core clinical features of spastic
paraplegia, including an early age at onset (<8 years), deve-
lopmental delay and spastic gait.

We did not find any likely pathogenic variants in
known HSP genes in family 1 (Fig. 1c). We did, however,
identify a homozygous in-frame deletion in the PEX16
g e n e ( NM _ 0 0 4 8 1 3 . 2 : c . ( 9 9 5 _ 9 9 7 d e l T C T ) ,
NP_004804.1:p.(Phe332del)). Mutations in PEX16 can
cause peroxisomal biogenesis disorder 8A (Zellweger,
OMIM 614876) and 8B (OMIM 614877), for which this
variant has been reported as likely pathogenic (ClinVar
209181). The same variant also in a homozygous state
was recently identified in a patient with progressive ataxia
and a mild elevation of very long-chain fatty acids
(VLCFAs) [10]. Neuroimaging findings in the proband
from family 1 include white matter abnormalities and cer-
vical cord atrophy, consistent with a peroxisomal disorder
(see inset, Fig. 1c).

For family 7 (Fig. 1d), no convincing candidate variants
were identified in known HSP genes to explain the severe
phenotype which included spastic limbs, limb dystonia and
developmental delay. We subsequently identified compound
heterozygous variants in the GLB1 gene, known to cause
GM1 gangliosidosis (OMIM 230500) in the affected siblings.
This included a paternally inherited, novel canonical splice
site variant (NM_000404.2:c.(553-2A>G)) and a maternally
inheri ted previously reported pathogenic variant
(NM_000404.2:c.(1325G>A); NP_000395:p.(Arg442Gln))
[11]. Enzymology for GM1 gangliosidosis was subsequently
performed on peripheral blood leukocytes as described [12],
confirming reduced β-galactosidase enzyme activity of 1.6
(normal range 32.5–206.5 nmol/h/mg protein). Clinical eval-
uation did not detect any evidence of skeletal involvement,
cardiac involvement or hepatosplenomegaly.

We developed ROHmer to perform homozygosity map-
ping from WGS data, which confirmed that all homozygous
mutations were located within regions of homozygosity
(Fig. 2, Supplementary Fig. 3).

Five families remained undiagnosed, i.e. families 3, 5,
6, 8 and 11 (Supplementary Fig. 4), four of which we
only sequenced the proband and two were consanguine-
ous. We searched an expanded set of 589 predicted HSP
genes (HSPome [5]), and used dedicated analysis to
identify CNV, SV (Supplementary Fig. 5) and predicted
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splice variants that affect HSP genes. No additional
promising candidates were identified.

Discussion

We identified a genetic diagnosis in 4/9 (~44 %) families with
HSP. A genetic cause was detected in those cases in which
multiple family members were sequenced (4/4), and those that
were consanguineous (4/6). In two families, we identified
novel homozygous variants in established SPG genes
(DDHD2 and CYP2U1), consistent with the previously de-
scribed phenotype. In a further two families, a genetic
aetiology was identified in non-SPG genes, leading to novel
genotype-phenotype associations related to neurometabolic
disorders. In family 1, we identified an in-frame deletion in
PEX16. This mutation has been reported in a patient with

spastic ataxia and white matter abnormalities on MRI [10].
The proband from our study was considered to have a HSP
rather than a form of ‘spastic ataxia’ given the predominance
of lower limb weakness and spasticity. This finding provides
additional evidence that perixosomes play a role in the patho-
genesis of HSP [13].

We identified compound heterozygous variants in the
GLB1 gene in family 7. The phenotype overlapped with
GM1 gangliosidosis type II (late infantile). This suggests that
GM1 gangliosidosis may be a phenocopy for a severe, early-
onset, complicated form of HSP. In this case, hypothesis-free
genetic testing prompted the clinician to reassess the patient
leading to a change of diagnosis, reminiscent of the ‘reverse
phenotyping’ approach reported previously [14]. The identifi-
cation of unexpected neurometabolic disorders in this study
highlights that a broader metabolic work-up may be valid in
patients presenting with early-onset HSP.

Fig. 1 Pedigrees of families with identified putative causal mutations. a
Family 12 with a homozygous splice site variant in DDHD2. b Family 9
with a homozygous 4 b.p. deletion in CYP2U1. c Family 1 with an in-
frame deletion in PEX16. Inset (left) shows transverse MRI brain axial
FLAIR sequence showing posterior white matter changes consistent with
hypomyelination (red arrow). Inset (right) demonstrates atrophy of the

cervical cord on sagittal T1-weighted MRI brain. d Family 7 with com-
pound heterozygous variants in theGLB1 gene. Electropherograms show
wild-type sequence above, sequence in affected children below, black
arrows indicate missense variants. Squares, males; circles, females;
diagonal line through symbol, deceased; filled symbol, affected indivi-
dual; asterisk, patient has undergone whole genome sequencing
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WGS allowed us to perform a number of additional inves-
tigations that would not have been possible with targeted ap-
proaches, including dedicated analysis for CNVs, SVs and
splice site prediction deep within introns. This multimodal
approach should be investigated further using larger sample
sizes.

In 5/9 families, a genetic diagnosis was not identified.
Without additional family members, prioritising variants out-
side of the HSP genes is challenging. It is possible that

pathogenic variants in HSP genes were missed due to subop-
timal coverage, or that variants fell in regions that are difficult
to interpret (introns, untranslated or regulatory regions).
Furthermore, triplet-repeat disorders can overlap with the
HSP phenotype, and may not be readily identifiable from
WGS data. Moreover, in sporadic cases, acquired causes
should also be considered.

This study is consistent with early-onset HSP phenotypes
being secondary to pathogenic variants in both SPG and in

Fig. 2 Homozygosity mapping
using PLINK confirmed that
putative homozygous variants
were located within regions of
homozygosity (shaded pink) for
affected members from family 12,
family 9 and family 1 (panels a–c,
respectively). VAF variant allele
frequency
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non-SPG genes, with consideration of inherited peroxisomal
or lysosomal disorders being important phenocopies. If a
targeted sequencing approach assessing only known SPG
genes had been taken, the diagnostic rate would have been
just 20 %. Rather than undertaking a series of cascading ge-
netic tests as part of a diagnostic odyssey, WES orWGS could
be used as the initial genetic test for patients with early-onset
HSP. It may be particularly effective when used in the context
of a family study or in populations where the mutation spec-
trum is unknown or difficult to anticipate.
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