
V E L I M I R G AY E V S K I Y

O B S T R U C T M A N U A L —
V E R S I O N 1 . 0

H T T P : / / G O D D A R D L A B . A U C K L A N D. A C . N Z / O B S T R U C T

MAILTO:V.GAYEVSKIY@AUCKLAND.AC.NZ
HTTP://GODDARDLAB.AUCKLAND.AC.NZ/BSTRUCT


Copyright © 2013 Velimir Gayevskiy

http://goddardlab.auckland.ac.nz/obstruct

ObStruct is licensed under Creative Commons CC BY-SA 3.0

Manual last updated: December 2013

mailto:v.gayevskiy@auckland.ac.nz
http://goddardlab.auckland.ac.nz/obstruct
http://creativecommons.org/licenses/by-sa/3.0/


Contents

Introduction 5

Introduction and Purpose 5

ObStruct Software Overview 6

ObStruct Input 9

Input Files from InStruct, Structure & baps 10

structure 10

InStruct 10

baps 10

Population Classifications 11

Creating a CSV File for Input 11

Using a structure Output 13

Examples of Input Strings 14

Using a InStruct Output 15

Examples of Input Strings 16

Using a BAPS Output 17

Examples of Input Strings 18

Important Note Regarding p-values 18

Using a CSV File 19

Examples of Input Strings 20



4

ObStruct Output 21

Parsed Ancestry Profiles CSV 21

ObStruct Main Output CSV 21

R Script for Visualization of Ancestry Profiles 23

Extra Information 29

Bibliography 33



Introduction

Introduction and Purpose

ObStruct is a tool for the objective analysis of population structure within outputs derived from the
population genetics software packages InStruct [Gao et al., 2007], structure [Pritchard et al., 2000] and
baps [Corander et al., 2004, 2008]. These software packages use Bayesian methods to test for population
structure in genetic data from a number of individuals in a number of sampled populations. The Bayesian
approach allows the probabilistic assignment of individuals to any number of computationally inferred
populations within each of which there is free gene flow. structure attempts to do this by clustering
individuals within each inferred population so as to maximize Hardy-Weinberg equilibrium; InStruct

calculates the expected genotype frequencies given the rates of inbreeding within each inferred population;
and baps relies on the differences in allele frequencies to partition individuals. The main benefit of this
is that individuals no longer have to be a priori assigned to populations, the genetic data is presented to
the software and if there are groups of individuals which are closely related to one another, the methods
will tend to cluster them together within one of the inferred populations. We can thus define these pro-
portions of clustering to each inferred population as ancestry profiles where each individual has a certain
percentage of ’fit’ to each inferred population.

Ancestry profiles produced by structure and InStruct are typically visualized in the distruct

[Rosenberg, 2003] software while baps produces its own similar plots which simply assigns a unique color
to each inferred population and creates a column graph where each individual is a column made up of the
proportions of ancestry to each inferred population. Individuals from each sampled population are then
grouped together and separated from the other populations. If there is population structure within the
sampled populations, individuals within them will tend to have high proportions of ancestry to unique
inferred populations, i.e. consist of large blocks of unique colors. This technique is an excellent tool for
visualizing the data and making conclusions, but it lacks the crucial step of objectivity. For example, how
do you judge the differing amounts of structure within each of the sampled populations given different
population sizes and rates of admixture? How do you compare different data sets to determine their
relative levels of structure? How do you test whether sampled populations are significantly different from
one another or whether they come from a single population?

ObStruct focuses on the objective analysis of these ancestry profiles to answer the questions posed
above and many others. At the core of ObStruct is the R2 statistic which determines the variability within
sampled (predefined by the user) populations and the variability between them and goes on to produce
a single number (R2) which indicates what proportion of the variability in the data is explained by the
predefined populations. ObStruct further tests statistical significance by permuting the assignment of



6

ancestry profiles to individuals and performs additional analyses of population structure to further delve
into which populations within the data are contributing to the overall level of structure in the data.

ObStruct Software Overview

This section will describe the process that ObStruct takes to
generate its outputs in a step-by-step manner.

After ObStruct is run from the command line with the parameters
specified in the ObStruct Input section below, it proceeds to load
the input file1. If InStruct, structure or baps outputs are 1 Checks are performed to determine

whether the parameters are correct
given the populations genetics software
used and whether input files exist.

specified as the input files, ObStruct will parse them for the
the ancestry profiles. This parsing includes compiling a list of all
individuals within the data, determining their sampled population
classifications then associating their ancestry profiles to them. This
information is then exported to a csv (comma-separated values)
file. The reason for parsing into a csv file is that it allows a single
standard format for ObStruct to work with which is easy to edit
for users wishing to change predefined population2 membership, 2 They are called predefined popula-

tions due to the ability of the user to
classify individuals within their input
data into any population they wish.

add/remove individuals or create simulated data. In these cases, the
edited or created csv files can be loaded directly into ObStruct,
bypassing the parsing step altogether.

ObStruct computes the R2 values for different combinations of
individuals. To assess the overall structure it computes the R2 value
for the whole data set. Next, it computes the R2 values for all pairs of
predefined populations, the R2 values for the remaining individuals
after removal of single predefined populations, and the R2 value for
the data after removal of single inferred populations.

The significance of the value observed for the entire dataset and
pairwise predefined populations comparisons is assessed by a per-
mutation approach. For the whole data set, ObStruct permutes
the population membership of individuals 10,000 times and com-
putes the R2 value for each permutation. The approximate p-value is
then the proportion of permuted R2 values exceeding the original R2

value. For the pairwise assessment, 1,000 permutations are executed
for each test, and a Bonferroni correction is applied to the p-value to
account for multiple pairwise testing.

ObStruct does not provide p-values for calculations of R2 when
each predefined/inferred population is removed in turn because
significance for these cases is reflected in the pairwise testing. For ex-
ample, if only a single predefined population is driving the structure
within the data, all pairwise comparisons not involving this struc-
tured population will show very little structure with non-significant
p-values.



7

Finally, ObStruct generates an R script. This script can simply
be opened in the statistical software R and run to produce three
figures visualizing the structure within the data using Canonical
Discriminant Analysis (CDA).

http://www.r-project.org




ObStruct Input

ObStruct is a Perl script which must be run from the command line.
In Windows you will need to open a command prompt which is

capable of running Perl. If you are using Strawberry Perl3, this can be 3 Strawberry Perl is the recommended
Perl interpreter for Windows, download
it here.

found in the Start Menu in the Strawberry Perl folder labelled ‘Perl
(command line)’.

Both Apple OS X and Linux come pre-loaded with Perl so just
open Terminal and you are ready to go.

To run ObStruct, you simply need to enter the string specified in
each of the "Using a <software> Output" sections below but replace
each of the parameters (the ones with dashes) with a value for that
parameter from the associated parameter description tables.

ObStruct comes with four sample input files: the InStruct out-
put instruct-yeastdata.txt; the structure output structure-humandata-k-is-6;
the baps output baps-humandata.txt; and, a simulation output
sim.csv. Examples of input strings for each of these input files for
both Apple OS X/Linux and Windows can be found in the "Using a
<software> Output" sections below. Due to the way the two human
datasets were created and run through structure and baps, you
should only compare the overall R2 value and R2 patterns seen in the
ObStruct output. A more detailed explanation of this can be found
in the Extra Information section at the end of this document.

If you have your output file ready to run through ObStruct or
wish to use one of the example files then jump to the correct section
based on the software you used to generate it:

Using a structure Output
Using a InStruct Output
Using a BAPS Output
Using a CSV File
Alternatively, read on for more information about these output

files and how you can create your own in the Input Files from In-
Struct, Structure & baps and Creating a CSV File for Input
sections.

http://strawberryperl.com/


10 obstruct manual — version 1.0

Input Files from InStruct, Structure & baps

structure

If you are using a structure output file as your input into
ObStruct, you must navigate to the project output directory of
your structure run and find the Results folder. Within this folder
you will see a number of files the first of which ends with _run_1_f

and the rest iterate the 1 for each additional file. These files have the
following header:

—————————————————–
STRUCTURE by Pritchard, Stephens and Donnelly (2000)
and Falush, Stephens and Pritchard (2003)
Code by Pritchard, Falush and Hubisz
Version 2.3.2.1 (Oct 2009)
—————————————————–

Find the file which contains the number of inferred populations you
are interested in and copy it to the working directory. This file can be
specified as the input file into ObStruct.

InStruct

If you are using a InStruct output file as your input into Ob-
Struct, copy the InStruct output file to the working directory. The
InStruct output file has the following header:

==============================================
InStruct by Gao, Williamson and Bustamante (2007)
Code by Hong Gao
Version 1.0 (May. 2007)
==============================================

This file can be specified as the input file into ObStruct.

baps

If you are using an baps output file as your input into ObStruct,
copy the baps output file to the working directory. baps runs its
analyses in a two-step manner where first a "Population mixture
analysis" is performed followed by a secondary "Population admix-
ture" analysis. Please perform both analyses and make sure they are



obstruct input 11

output one after another to the same output file from baps. The baps

output file has a header similar to this:

RESULTS OF INDIVIDUAL LEVEL MIXTURE ANALYSIS:

Data file: microsats.txt

Number of clustered individuals: 1484

Number of groups in optimal partition: 6

Log(marginal likelihood) of optimal partition: -89760.5629

Best Partition:

This file can be specified as the main input file into ObStruct. Since
baps does not specify the population membership of each individual
in its main output file, you will need to also specify the population
index file you used to run baps. More information on how to do this
can be found in the Using a BAPS Output section below.

Population Classifications

InStruct, structure & baps do not print population names as
words in their outputs. Since ObStruct can only work with what it is
given, parsed output files from InStruct, Structure & baps will
retain the numbers assigned to the predefined populations by these
software. This leaves the user of ObStruct with two options, either
go back to the outputs from InStruct, structure or baps and
determine which predefined population matches to which number in
the ObStruct output, or rename the predefined populations in the
parsed csv file that ObStruct produces and input the file as -csv for
the software parameter4. More information on how to do this is in 4 You can use letters, numbers, dashes,

underscores and periods for population
names if renaming within the csv file.

the section below.

Creating a CSV File for Input

You will recall from the ObStruct Software Overview section
that ObStruct parses the input files from Structure, InStruct or
baps to generate a standard input csv file which it then operates on.
A csv file contains rows of comma-separated values where each row
contains an individual’s information separated by a comma and there
are as many rows as there are individuals.

The csv file produced by ObStruct is as follows: each row of the
csv file contains one individual; the first column is the individual’s



12 obstruct manual — version 1.0

name, the second is its population name/number5 and the remain- 5 Population names can be unique
numbers (as generated by InStruct,
Structure or baps) and/or letters
that may contain numbers, dashes,
underscores and periods.

ing columns are the ancestry values of the individual to Inferred
population 1, Inferred population 2, etc.

This is an example of this format for real data:

HB_C_BROOKLANDS_1,0,0.030,0.007,0.099,0.015,0.026,0.014,0.028,0.009,0.756,0.017

HB_C_BROOKLANDS_10,0,0.039,0.257,0.006,0.308,0.055,0.009,0.029,0.123,0.075,0.099

HB_C_BROOKLANDS_11,0,0.011,0.008,0.017,0.008,0.912,0.008,0.013,0.008,0.008,0.008

WA_C_CODDINGTON_1,1,0.947,0.005,0.005,0.005,0.005,0.006,0.005,0.005,0.011,0.005

WA_C_CODDINGTON_10,1,0.005,0.004,0.960,0.004,0.005,0.004,0.004,0.004,0.005,0.004

WA_C_CODDINGTON_11,1,0.004,0.004,0.958,0.005,0.005,0.004,0.005,0.004,0.005,0.005

In the above example we have 6 individuals and their ancestry
profiles to 10 inferred populations. The first column6 contains the 6 The first piece of information in each

row followed by a commaindividual names, the second column contains the population assign-
ment7 and the remaining columns contain ancestry values to each of 7 In this case the first three individuals

belong to predefined population 0

while the last three belong to prede-
fined population 1.

the inferred populations in these data (10 in total) and should sum to
1.

For studies involving simulation or other computational creation
of ancestry profiles, simply print them in the format specified above
and ObStruct will read them and process them when csv is specified
as the software input.

Note that you may experience problems with editing or creat-
ing these csv files in Microsoft Excel. Excel occasionally adds non-
standard characters to csv files which may not be able to be read by
ObStruct. If you get errors after editing a csv file in Excel, try using
a plain text editor with regular expressions instead.



obstruct input 13

Using a structure Output

To run ObStruct with an output file produced by structure,
you will need to call ObStruct from the command line with several
parameters8. The following line is the generic input you will need to 8 Parameters are otherwise known as

arguments or options. They specify
a vital piece of information for the
software to run.

enter into the command line with each of the parameters in this line
explained in the table below it:

perl /Path/To/ObStruct.pl -structure -working_directory -input_file -output_file

Parameter Description

/Path/To/ObStruct.pl The location of the ObStruct Perl script. To make sure the formatting of
the directory path is correct, drag in the Perl script file into the termi-
nal/command line input. This will print the path in the correct format for
your operating system.

-structure This simply specifies to ObStruct that you wish it to analyze a structure

output file.

-working_directory ObStruct only works within a single directory. The directory you specify
here will house your input files and will be where output files are written.
Note that it should end with a slash. As before, you can simply drag a
folder into your command line to have the full path come up in the correct
format for your operating system.
If there are any spaces in this directory path, you will need to escape them
with quotation marks in Windows (e.g. -C:\Working" "Directory\) and
a backslash in Apple OS X/Linux (e.g. -/Users/Smith/Working\ Direc-
tory/).

-input_file The filename of the input file. This input file must be in the working direc-
tory. Note that you do not need to specify a path for this file as you have
already specified the working directory.

-output_file The filename for the outputs of ObStruct. These will be saved in the work-
ing directory as two files ending in .csv and .r with the filename specified
in this parameter. Once again, you do not need to specify a path for this
parameter.

Table 1: Explanation of the parameters
to be used when running ObStruct

with a structure output file.



14 obstruct manual — version 1.0

Examples of Input Strings

Apple OS X & Linux

perl /Users/Smith/Desktop/ObStruct.pl -structure -/Users/Smith/Desktop/ObStruct\ Data/

-structure-humandata-k-is-6 -structure-humandata-k-is-6-output

Windows

perl C:\Users\Smith\Desktop\ObStruct.pl -structure -C:\Users\Smith\Desktop\ObStruct" "Data\
-structure-humandata-k-is-6 -structure-humandata-k-is-6-output



obstruct input 15

Using a InStruct Output

To run ObStruct with an output file produced by InStruct,
you will need to call ObStruct from the command line with several
parameters9. The following line is the generic input you will need to 9 Parameters are otherwise known as

arguments or options. They specify
a vital piece of information for the
software to run.

enter into the command line with each of the parameters in this line
explained in the table below it:

perl /Path/To/ObStruct.pl -instruct -working_directory -input_file -output_file -K

Parameter Description

/Path/To/ObStruct.pl The location of the ObStruct Perl script. To make sure the formatting of
the directory path is correct, drag in the Perl script file into the termi-
nal/command line input. This will print the path in the correct format for
your operating system.

-instruct This simply specifies to ObStruct that you wish it to analyze a InStruct

output file.

-working_directory ObStruct only works within a single directory. The directory you specify
here will house your input files and will be where output files are written.
Note that it should end with a slash. As before, you can simply drag a
folder into your command line to have the full path come up in the correct
format for your operating system.
If there are any spaces in this directory path, you will need to escape them
with quotation marks in Windows (e.g. -C:\Working" "Directory\) and
a backslash in Apple OS X/Linux (e.g. -/Users/Smith/Working\ Direc-
tory/).

-input_file The filename of the input file. This input file must be in the working direc-
tory. Note that you do not need to specify a path for this file as you have
already specified the working directory.

-output_file The filename for the outputs of ObStruct. These will be saved in the work-
ing directory as two files ending in .csv and .r with the filename specified
in this parameter. Once again, you do not need to specify a path for this
parameter.

-K This parameter can either be: -[number] or -optimal. InStruct prints its
output into a single large text file which includes a range of K values and
a number of chains. You have the option to use a specific value of K or to
automatically use the optimal value of K as determined by InStruct at the
end of its output. Note that K needs to be greater than 1.

Table 2: Explanation of the parameters
to be used when running ObStruct

with a InStruct output file.



16 obstruct manual — version 1.0

Examples of Input Strings

Apple OS X & Linux

perl /Users/Smith/Desktop/ObStruct.pl -instruct -/Users/Smith/Desktop/ObStruct\ Data/

-instruct-yeastdata.txt -instruct-yeastdata-output -optimal

perl /Users/Smith/Desktop/ObStruct.pl -instruct -/Users/Smith/Desktop/ObStruct\ Data/

-instruct-yeastdata.txt -instruct-yeastdata-output -5

Windows

perl C:\Users\Smith\Desktop\ObStruct.pl -instruct -C:\Users\Smith\Desktop\ObStruct" "Data\
-instruct-yeastdata.txt -instruct-yeastdata-output -optimal

perl C:\Users\Smith\Desktop\ObStruct.pl -instruct -C:\Users\Smith\Desktop\ObStruct" "Data\
-instruct-yeastdata.txt -instruct-yeastdata-output -5



obstruct input 17

Using a BAPS Output

To run ObStruct with an output file produced by baps, you
will need to call ObStruct from the command line with several
parameters10. The following line is the generic input you will need to 10 Parameters are otherwise known as

arguments or options. They specify
a vital piece of information for the
software to run.

enter into the command line with each of the parameters in this line
explained in the table below it:

perl /Path/To/ObStruct.pl -baps -working_directory -input_file -output_file -population_index_file

Parameter Description

/Path/To/ObStruct.pl The location of the ObStruct Perl script. To make sure the formatting of
the directory path is correct, drag in the Perl script file into the termi-
nal/command line input. This will print the path in the correct format for
your operating system.

-baps This simply specifies to ObStruct that you wish it to analyze a baps out-
put file.

-working_directory ObStruct only works within a single directory. The directory you specify
here will house your input files and will be where output files are written.
Note that it should end with a slash. As before, you can simply drag a
folder into your command line to have the full path come up in the correct
format for your operating system.
If there are any spaces in this directory path, you will need to escape them
with quotation marks in Windows (e.g. -C:\Working" "Directory\) and
a backslash in Apple OS X/Linux (e.g. -/Users/Smith/Working\ Direc-
tory/).

-input_file The filename of the input file. This input file must be in the working direc-
tory. Note that you do not need to specify a path for this file as you have
already specified the working directory.

-output_file The filename for the outputs of ObStruct. These will be saved in the work-
ing directory as two files ending in .csv and .r with the filename specified
in this parameter. Once again, you do not need to specify a path for this
parameter.

-population_index_file The baps output file does not specify the predefined population member-
ships of each individual so it needs to be specified separately. Simply take
the population index file you used to run baps and place it in the working
directory then specify the filename here.

Table 3: Explanation of the parameters
to be used when running ObStruct

with a baps output file.



18 obstruct manual — version 1.0

Examples of Input Strings

Apple OS X & Linux

perl /Users/Smith/Desktop/ObStruct.pl -baps -/Users/Smith/Desktop/ObStruct\ Data/

-baps-humandata.txt -baps-humandata-output -baps-population-index.txt

Windows

perl C:\Users\Smith\Desktop\ObStruct.pl -baps -C:\Users\Smith\Desktop\ObStruct" "Data\
-baps-humandata.txt -baps-humandata-output -baps-population-index.txt

Important Note Regarding p-values

baps produces a p-value for each ancestry profile indicating whether
admixture events within the profiles are significant or not. At present,
ObStruct ignores these p-values and parses the ancestry profiles as
they are output by baps. A future version of ObStruct may include
a flag for disregarding admixture events which baps determines
non-significant.



obstruct input 19

Using a CSV File

To run ObStruct with a CSV file previously produced by Ob-
Struct or one that you made yourself, you will need to call Ob-
Struct from the command line with several parameters11. The 11 Parameters are otherwise known as

arguments or options. They specify
a vital piece of information for the
software to run.

following line is the generic input you will need to enter into the
command line with each of the parameters in this line explained in
the table below it:

perl /Path/To/ObStruct.pl -csv -working_directory -input_file -output_file

Parameter Description

/Path/To/ObStruct.pl The location of the ObStruct Perl script. To make sure the formatting of
the directory path is correct, drag in the Perl script file into the termi-
nal/command line input. This will print the path in the correct format for
your operating system.

-csv This simply specifies to ObStruct that you wish it to analyze a csv file.

-working_directory ObStruct only works within a single directory. The directory you specify
here will house your input files and will be where output files are written.
Note that it should end with a slash. As before, you can simply drag a
folder into your command line to have the full path come up in the correct
format for your operating system.
If there are any spaces in this directory path, you will need to escape them
with quotation marks in Windows (e.g. -C:\Working" "Directory\) and
a backslash in Apple OS X/Linux (e.g. -/Users/Smith/Working\ Direc-
tory/).

-input_file The filename of the input file. This input file must be in the working direc-
tory. Note that you do not need to specify a path for this file as you have
already specified the working directory.

-output_file The filename for the outputs of ObStruct. These will be saved in the work-
ing directory as two files ending in .csv and .r with the filename specified
in this parameter. Once again, you do not need to specify a path for this
parameter.

Table 4: Explanation of the parameters
to be used when running ObStruct

with a csv file.



20 obstruct manual — version 1.0

Examples of Input Strings

Apple OS X & Linux

perl /Users/Smith/Data/ObStruct.pl -csv -/Users/Smith/Desktop/ObStruct\ Data/ -sim.csv

-sim-output

Windows

perl C:\Users\Smith\Desktop\ObStruct.pl -csv -C:\Users\Smith\Desktop\ObStruct" "Data\ -sim.csv

-sim-output



ObStruct Output

The overview in the Introduction outlines the process that ObStruct

takes to generate its outputs. This section will provide examples of
the outputs of ObStruct and explain them. ObStruct generates
a total of three files from a run – a csv file of the parsed ancestry
profiles12, an R script for generating CDA plots and another csv file 12 For a run where csv is specified as the

software this file is not generated.containing the R2 calculations and significances for your data. The
first of the output files is named the same as the input filename but
with a .csv extension while the second and third are named based on
the output filename specified for the run with .r and .csv extensions,
respectively.

Parsed Ancestry Profiles CSV

When inputting the outputs of InStruct, structure or baps

runs into ObStruct, the first step is to parse13 them into a csv file 13 Parsing means reading in the input
file and processing it.which is then used as the true input for ObStruct automatically.

To understand this format and to create your own csv file see the
Creating a CSV File for Input section. You do not generally need
to look at or touch this file unless you need to change population
assignments or add/remove data.

ObStruct Main Output CSV

The primary output from ObStruct contains the calculated R2

values for: the overall data, all pairwise comparisons of predefined
populations, each inferred/predefined population removed in turn
and the permutation significance values of the overall data and
pairwise comparisons. This output is printed as a csv file which is an
ideal simple spreadsheet format. This file can be opened in any text
editor, but is most suited to opening in spreadsheet software such
as Microsoft Excel. Below is an example of this output in Microsoft



22 obstruct manual — version 1.0

Excel from a dataset of 1,484 humans sampled from 7 continents and
analyzed for population structure using Structure.

The first two lines of this output contain the overall R2 value for
your data and the associated p-value. When p-value <0.0001 is
printed, none of the 10,000 permutations of the data resulted in an
R2 value larger than the observed value, meaning more permutations
would be needed to obtain a more accurate p-value14. 14 This would be computationally

intensive as it could take billions
of permutations before one is more
structured by chance.

The next block in the output is the pairwise matrix of predefined
populations. The first column contains the predefined population
labels with the same order of populations along the top of the matrix.
Values within the matrix are the R2 values for each pairwise compar-
ison with significance in brackets15. NA values are, of course, when 15

1,000 permutations are performed
for pairwise comparisons to save
computing time.

a population is compared with itself, which is not calculated and
therefore not applicable.

Next we have two sets of R2 values for the rest of the data when
each predefined/inferred population is left out in turn. These are
sorted by R2 value from smallest to largest. The populations which
decrease the R2 value from the overall value when removed from the
data have a greater than average contribution to the structure within
the data. These populations are likely the most structured since with-
out them the rest of the data becomes more variable. Likewise, the



obstruct output 23

populations that increase the R2 value from the overall value when re-
moved contribute least to structure – i.e. they contain a large amount
of admixture. The calculation of R2 takes into account population
size so a small but highly structured predefined population may
not be listed as the most structured in favor of a larger slightly less
structured population; this acts to account for sampling variability.

To provide a comparison against the highly structured human
data, below we see the same output for simulation data where all five
predefined populations contain no significant structure between them.

R Script for Visualization of Ancestry Profiles

The R script created by ObStruct is used to produce visualizations
of the ancestry profiles using canonical discriminant analysis (CDA)
[Gittins, 1985]. A CDA searches for a transformation of the ancestry
profiles so that the variation and difference between the individuals
is mapped to a smaller space of independent factors. The data are
transformed such that the data median is located at the origin. This



24 obstruct manual — version 1.0

helps visualize the data easier. The candisc package [Friendly, 2007]
for the statistical software R provides the transformations and visu-
alizations. In order to run this script, install R and open the .r file in
it from the same directory in which it was created16. You should see 16 The R script defines the working

directory as the directory in which the
script was created and in which the
ObStruct outputs are housed. If you
wish to run the script from another
directory, you will need to update the
line setwd(<directory>) in the script to
the directory of the ObStruct outputs.

a window with some code in it. You can execute the script in two
different ways:

1. Select all of this code by pressing Ctrl+A in Windows or Com-
mand+A in Apple OS X. Press Ctrl+R in Windows or Com-
mand+Enter in Apple OS X to execute the script.

2. Use the command line of R. Type getwd() to check if you are
in the right working directory. If not, set the right working di-
rectory by typing setwd(“working_directory”) and replace
working_directory with the directory your files are contained
in. Note that R permits autofill by using the tab key. To execute
the script simply type source("script_file.r") and replace
script_file.r with the name of the ObStruct output file.

If this is your first time running a CDA analysis, you will need to
uncomment the top 6 lines beginning with # install by removing
the hash (#) symbol. This will force R to install the packages required
to run the analysis.

If the script is successful, you will see a folder called ’graphs’ in
the same directory as the script. This folder will contain three sepa-
rate visualizations with the following filenames: candisc_all_data.pdf,
candisc_ellipse.pdf & candisc_heplot.pdf. Below are examples of
these three visualizations for a dataset of 1,484 humans sampled from
7 continents and analyzed for population structure using Structure.

http://www.r-project.org


obstruct output 25

−5 0 5

−
5

0
5

Can 1, 37.84%

C
an

 2
, 2

7.
57

%

●

●
●

●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●

●

●
●

●
●●● ●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●●

●

●
●

●
●

●

●●
● ●●

●●

●

●

●

●

●

●
● ●●

●● ●
●

●
●

●
●

● ●●
●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●●

●
●

●
●

●●

●

●●

●●
●

●

●
●

●

●

● ●

●
●

●

●
●●●

●

●

● 1
2
3
4
5
6
7

(a) candisc_all_data.pdf

−5 0 5

−
5

0
5

Can 1, 37.84%

C
an

 2
, 2

7.
57

%
●

● 1
2
3
4
5
6
7

(b) candisc_ellipse.pdf

−40 −20 0 20 40

−
40

−
20

0
20

40

Can1 (37.8%)

C
an

2 
(2

7.
6%

)

+
Error

group

●
●

●
●

●
●

●

1234

5
6

7

1

2

3

4

5

6

(c) candisc_heplot.pdf



26 obstruct manual — version 1.0

The plots visualize the data with respect to the two dimensions17 17 Labelled Can 1 and Can 2.

covering the highest variability. The variability is shown as a per-
centage behind the axis labels. In this example the two best variables
cover about 65% of the variability in the data. The first plot (can-
disc_all_data.pdf) shows every individual within the data colored by
their predefined population. The inner grey ellipse contains 50% of
all individuals while the outer grey ellipse contains 95% of all indi-
viduals. The second plot (candisc_ellipse.pdf) reduces the amount of
information by only showing the median and the 50% ellipse for each
predefined population. This visualization provides a better indication
of the separation of populations and the within group variation. The
third plot (candisc_heplot.pdf) is a so-called HE-plot. The outer blue
ellipsoid labelled group reflects the variation of the group means
around the grand mean18 while the red circle reflects the pooled 18 The numerator of the R2 statistic.

within-group dispersion and covariation19. A small red circle in a 19 The denominator of the R2 statistic.

large blue ellipsoid indicates that the data are well discriminated by
the two canonical dimensions. If the red circle fills the blue ellipsoid
we can assume that the variation of the group means around the
grand mean can be explained by the within-group dispersion and
covariation. Black dots indicate the group means of the respective
populations. Blue arrows indicate the correlation with the linear
combinations of the canonical dimensions. For instance, a horizontal
line would indicate that the inferred population is strongly correlated
with the first canonical dimension and uncorrelated with the second
canonical dimension.

Examples 1(a)–1(c) show the plots for the human data. We see
that the groups are well discriminated by the first two canonical
dimensions and that there is a high correlation between the inferred
populations and the predefined populations. Examples 1(d)–1(f)
show the plots for an example with no significant difference within
the predefined populations, i.e. in this example the data cannot
discriminate the predefined populations. These data have been
generated in a simulation study where five populations are sampled
just after splitting off from their common ancestor, i.e. no divergence
has occurred yet and the individuals are effectively from the same
population.



obstruct output 27

−4 −2 0 2 4

−
4

−
2

0
2

4

Can 1, 49.61%

C
an

 2
, 3

7.
01

%

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● 1
2
3
4
5

(d) candisc_all_data.pdf

−4 −2 0 2 4

−
4

−
2

0
2

4

Can 1, 49.61%

C
an

 2
, 3

7.
01

%

●

● 1
2
3
4
5

(e) candisc_ellipse.pdf

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Can1 (49.6%)

C
an

2 
(3

7%
)

+

Error

group

●

●

●

●

●

1

2
3

4
5

1

2

3

4

5

(f) candisc_heplot.pdf





Extra Information

Comment 1: InStruct has a bug where it does not print the name and population membership of the last
individual in its output. ObStruct corrects this by printing "Unknown" and the same population as the
individual before the last one. The results are unaffected since the last individual in the data should almost
always be in the same predefined population as the one previous to it and the name of individuals does
not matter for analysis.

Comment 2: When only two predefined populations exist in the data, ObStruct will still perform its
analysis but will not carry out pairwise predefined population calculations/permutations or the removal
of each predefined population with recalculation of R2. These methods require three or more predefined
populations.

Comment 3: ObStruct comes with two example outputs from structure and baps for the same
human data. Running both of these through ObStruct will produce similar overall R2 values and
significance values for all tests. However, the predefined population membership of each individual is
different for the two datasets so while both have the same number of individuals grouped in the same
populations, the number associated with, for example Africa, is different for each data set. This means that
the "R2 without predefined population 1" results from ObStruct will not be comparable for these two
data sets as well as the pairwise matrices. In a situation such as this where one might wish to compare
the two software packages, it would be advised to take the csv file produced by ObStruct for each of
these runs and determine which of the predefined population numbers within them correspond to which
continent/region in the data and change these numbers to these regions. Then, both updated csv files can
be run through ObStruct again and the correct predefined population names will be printed for each data
set to allow easy comparison.





Bibliography

J Corander, P Waldmann, P Marttinen, and M J Sillanpaa. BAPS 2: enhanced possibilities for the analysis
of genetic population structure. Bioinformatics, 20(15):2363–2369, October 2004.

Jukka Corander, Pekka Marttinen, Jukka Sirén, and Jing Tang. Enhanced Bayesian modelling in BAPS
software for learning genetic structures of populations. BMC bioinformatics, 9(1):539, 2008.

Michael Friendly. HE Plots for Multivariate Linear Models. Journal of Computational and Graphical Statistics,
16(2):421–444, June 2007.

H Gao, S Williamson, and C D Bustamante. A Markov Chain Monte Carlo Approach for Joint Inference
of Population Structure and Inbreeding Rates From Multilocus Genotype Data. Genetics, 176(3):1635–1651,
May 2007.

R Gittins. Canonical analysis: a review with applications in ecology. 1985.

J K Pritchard, M Stephens, and P Donnelly. Inference of population structure using multilocus genotype
data. Genetics, 155(2):945–959, June 2000.

Noah A Rosenberg. distruct: a program for the graphical display of population structure. Molecular Ecology
Notes, 4(1):137–138, December 2003.


	Introduction
	Introduction and Purpose
	ObStruct Software Overview

	ObStruct Input
	Input Files from InStruct, Structure & baps
	Creating a CSV File for Input
	Using a structure Output
	Using a InStruct Output
	Using a BAPS Output
	Using a CSV File

	ObStruct Output
	Parsed Ancestry Profiles CSV
	ObStruct Main Output CSV
	R Script for Visualization of Ancestry Profiles

	Extra Information
	Bibliography

